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Elucidating strategies of resource allocation and metabolism is

crucial for a better understanding of microbial phenotypes. In

particular, uncovering the governing principles underlying

these processes would be a crucial step for achieving a central

aim of systems microbiology, which is to quantitatively predict

phenotypes of microbial cells or entire populations in diverse

conditions. Here, some of the key concepts for understanding

cellular resource allocation and metabolism that have been

suggested over the past years are reviewed. In particular,

recent experimental studies that have shown how phenotypic

patterns from orthogonal genetic and environmental

perturbations can help to differentiate between competing

hypotheses and their respective predictions are discussed.

Phenomenological models have proven to be a valuable

addition to genome-scale models, capable of making

quantitative predictions with only few parameters and having

aided the identification of molecular mechanisms.
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Introduction
A central question of microbiology is what determines

growth rates in different environments and more gener-

ally what gives rise to the enormous variations of pheno-

types including, gene expression and metabolism in

different conditions [1,2]. In recent years, a consensus

has emerged that resource allocation strategies play a key

role in determining microbial phenotypes and a range of

governing principles has been proposed to underlie this

variation. There have been some remarkable success

stories, for example, recent work in which theoretical

models have helped elucidate regulatory and molecular

mechanisms of catabolite repression [3��]. However, for
www.sciencedirect.com 
understanding even simple phenomena like overflow

metabolism, there are still many competing hypotheses

currently debated, including limited oxygen availability

[4], limited membrane space [5], recycling of cofactors

[6], molecular crowding [7] and protein cost [8�,9,10��].
Phenotypic patterns resulting from orthogonal genetic

and environmental perturbations can help to differentiate

between these ideas and their respective predictions. [By

orthogonal perturbations, we mean perturbations that

affect growth rate, but elicit distinct and sometimes

complementary regulatory responses (e.g. carbon limita-

tion versus nitrogen limitation)]. This review summarizes

important works and conceptual advances in the search

for governing principles underlying patterns of resource

allocation and metabolism. Unfortunately, because of the

long history and broad scope of these questions, it is not

possible to provide a comprehensive review here. Instead,

the primary focus is on physics-inspired models that have

recently been proposed and tested experimentally.

Invariably, important and interesting works that would

deserve to be included in this review have been omitted

(Figure 1).

Self-replication and growth laws
A major step forward for understanding microbial metab-

olism, going beyond flux balance analysis, was the reali-

zation that the cost of producing enzymatic machinery

itself is an important factor determining growth rates

[10��,11]. The cell can be considered a self-replicating

system [12–14] that needs to duplicate all of its compo-

nents within the doubling time. To accomplish this, the

cell must on the one hand, polymerize all cellular macro-

molecules like proteins, RNA and the cell envelope and

on the other hand, using metabolic pathways break down

substrates and produce the biomass precursors and addi-

tional energy to fuel these polymerization processes (for

more information on the constraints of self-replication see

[15]). Growth rate is determined by a balance of fluxes

from metabolic precursors and polymerization. Polymeri-

zation of macromolecules requires an investment in

machinery, consisting primarily of ribosomes. Recently,

it was shown that the optimization for autocatalytic pro-

duction explains many features of the ribosome like that a

few large RNA molecules dominate ribosomal mass and

that their protein content is divided into small, similarly

sized units [16��]. Similarly, metabolic reactions are cata-

lyzed by enzymatic machinery. Therefore, to achieve

optimal growth rates, the cell must balance the fluxes

from metabolic reactions and polymerization, while min-

imizing the investment in enzymatic machinery and
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Self-replication and ‘lean production’ illustrated. (a) Illustration of the cell as a self-replicating system. Key components of this system are

ribosomes for polymerization of proteins, biosynthetic pathways that provide the precursors for macromolecules and energy production pathways

that supply the energetic requirements for polymerization. During stead-state growth, the cell must duplicate all of its components before a cell

division, but at the same time, the replication process itself is catalyzed by these components. Therefore, any alternative pathway or mechanism

that provides the same flux of biomass precursors or energy, but requires a smaller investment in cellular machinery (primarily proteins), will

enable faster replication. To draw and analogy to economics, lean production pathways maximize growth rate by maximizing the return on

investment of finite cellular resources. (b) Illustration of the lean production hypothesis for the example of energy metabolism and acetate

excretion taken from Basan et al. [37�]. For the same ATP production flux (yellow arrow), fermentation consumes a much larger carbon flux (gray

arrow) as compared to respiration. However, fermentation requires a smaller absolute investment in enzymatic machinery (red and blue proteins)

to catalyze this flux and therefore enables faster growth.
investing the ‘right’ proteome fractions in these pro-

cesses. For example, if the cell were to invest too many

resources into catabolic processes, this would result in the

production of more precursors and energy than could be

processed by the ribosomes (and some of the investment

in the catabolic processes would be effectively wasted).

On the other hand, too much investment in ribosomes

and biosynthetic machinery would result in a situation,

where biosynthesis could not be adequately supplied

with precursors and energy (part of the investment in

ribosomes and biosynthetic machinery would be effec-

tively wasted). Moreover, because the cell has finite

proteomic resources (fractions of total proteome), any

increase in investment in a one process must coincide

with a corresponding decrease in investment in another.

Maximum growth rate is therefore achieved when the cell

invests optimal proteome fractions in different cellular

processes, such that it balances fluxes from different

processes while minimizing the resource investment in

each of these processes.

The simple linear growth rate dependences of the abun-

dances of ribosomes and metabolic pathways that become

particularly apparent when proteins are clustered

together in proteome fractions, can be understood from

these argument, as realized by Scott et al. and translated
Current Opinion in Microbiology 2018, 45:77–83 
into growth laws [17��,18,19]. While abundances of ribo-

somes and biosynthetic pathways exhibit a proportional

increase with growth rate for different carbon sources, the

abundances of many metabolic pathways show the oppo-

site dependence and decrease with increasing growth rate

and ‘better’ carbon quality [2], referred to as a higher

nutritional capacity in Scott et al. [17��] or lower invest-

ment of gathering carbon in Molenaar et al. [10��]. Scott

et al. tested this picture experimentally by adding suble-

thal doses of the translation inhibiting antibiotic chlor-

amphenicol to the growth medium and by overexpressing

different quantities of useless, but otherwise harmless

protein [17��]. Chloramphenicol resulted in a higher

allocation of proteomic resources to ribosomes (working

at a lower speed), while useless protein expression

resulted in an additional proteomic burden constraining

available proteomic resources. Scott et al. were able to

successfully recapitulate these finding with their growth

laws and realized that remarkably, a large fraction of the

proteome is unaffected by these perturbations and

remains at a constant proteome fraction. This work con-

vincingly demonstrated the importance of allocation of

proteomic resources in determining growth rates and how

simple, thermodynamics-inspired models can be used to

make quantitative predictions on the cellular scale. In

hindsight, as discussed in the following sections, an
www.sciencedirect.com
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interpretation of their model, suggesting that the large

variation of growth rates that is observed between differ-

ent carbon sources arises primarily from variations in the

protein cost of carbon specific metabolism (‘nutritional

capacities’) is probably oversimplified. For instance,

many simple genetic modifications lead to much faster

growth rates on supposedly ‘slow’ carbon sources

[20,21��], casting doubt on this hypothesis and suggesting

that evolutionary objectives other than maximization of

steady-state rate of growth play a dominant role on these

carbon sources.

Catabolite repression
The coordination of catabolic and biosynthetic protein

sectors was further investigated by You et al. [3��], who

showed a linear increase in the abundances of a large

number of catabolic (defined as cAMP regulated) genes

with decreasing growth rates, upon limitation of carbon

influx, but a linear decrease under limitation of nitrogen

or sulfur influx. Biosynthetic genes exhibited the opposite

linear growth rate dependence under these limitations.

Importantly, You et al. proposed and validated a regula-

tory mechanism mediating this pattern of catabolite

repression, in which metabolic precursors, including oxa-

loacetate, alpha-ketoglutarate and pyruvate inhibit cAMP

signaling [3��]. This mechanism explains how a catabolite

repression pattern emerges for diverse carbon substrates,

independent of the long-known effect of the phospho-

transferase system on cAMP [22]. In a later study, Herm-

sen et al. used the concerted growth rate dependence of

the abundance of different catabolic genes characterized

by You et al. [3��] and combined this with the nutritional

capacity concept from Scott et al. [17��], to derive a growth

rate composition formula that was able to predict the

growth rate on a subset of co-utlized carbon substrates

from the growth rate on the individual substrate [23�].
Recent proteomics studies have confirmed the gene

expression patterns observed by You et al. and extended

this analysis to other growth limitations [2,24,25].

While these recent works have led to a better understand-

ing of the global metabolic patterns of resource allocation

and their regulation, the underlying function and evolu-

tionary benefit of catabolite repression remains much less

clear. Proteomics studies reveal that many of the genes

that are upregulated with decreasing carbon quality have

no immediate benefit in the specific growth conditions,

for example, many transporters of carbon sources that are

not present in the medium [2]. Instead, the expression of

these genes constitutes a substantial burden in terms of

protein cost, similar to useless protein expression [17��].
This incomplete repression is illustrated by an observed,

‘soft’ hierarchy or semi-hierarchical pattern of sugar co-

utilization [26]. While specific levels of cAMP are

required for optimal growth on different carbon sources,

high levels of cAMP are generally detrimental for growth,

presumably for this reason. In fact, in a recent work,
www.sciencedirect.com 
Towbin et al. have shown wild-type cAMP levels on

many carbon sources to be sub-optimal for maximizing

growth rates [21��]. Curiously, glucose can become one of

the worst carbon sources in poor nitrogen conditions [27].

The strength of the activation of carbon specific operons

by cAMP determines how much their expression will be

accompanied by the expression of other catabolic genes at

a substantial expression cost. Most of these catabolic

genes offer no obvious benefit for maximizing growth

rates in the present conditions and this phenomenon does

not appear to be restricted to carbon co-utilization,

because it occurs when cells are grown on single carbon

sources [3��]. Hence, it is possible that the ‘quality’ of

different carbon sources, as quantified by their steady-

state growth rate, may well be largely determined by their

relative position in the hierarchy of catabolic activation,

rather than carbon-specific properties of their transport

and metabolic pathways. Consistent with this notion,

relatively simple genetic modifications, like a knockout

of the global transcriptional regulator Cra, responsible for

the activation of gluconeogenesis [28,29,30�], or aerobic

overexpression of the global transcriptional regulator

ArcA, involved in regulation of anaerobic growth [31–

33], result in substantially improved growth rates as

compared to wild-type strains on many carbon sources

[34�]. Perhaps these observations indicate limitations of

cellular regulatory capabilities. On the other hand, it is

possible that the activation of catabolic genes with

decreasing growth rate may constitute a preparatory

response for other conditions [35]. The ‘quality’ of a

carbon source would then reflect, to a substantial degree,

the evolutionary and ecological need to prepare for and to

seek other growth conditions. This would result in lower

growth rates as a side effect, rather than being a result of

some intrinsic properties of the metabolic pathway of a

particular substrate. It would be interesting to compare

bacteria from more and less constant natural environ-

ments to see if these differences are reflected in their

patterns of catabolite repression.

Overflow metabolism
A key test of our understanding of resource allocation and

metabolism is predicting the use of distinct metabolic

strategies in different environments. Overflow metabo-

lism is a puzzling phenomenon that refers to the excretion

of fermentation products like acetate or lactate, which

occurs even in aerobic conditions for fast growing cells.

Overflow metabolism appears wasteful, because a large

amount of carbon is lost in the form of fermentation

products instead being used for the production of energy

or biomass building blocks. Despite being known for

almost a century, the origin of overflow metabolism

remains controversial, illustrating our limited understand-

ing of metabolic resource allocation, even for simple

model organisms like Escherichia coli. Standard metabolic

models like flux balance analysis do not naturally result in
Current Opinion in Microbiology 2018, 45:77–83
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overflow metabolism and the excretion flux is typically

imposed. Numerous hypotheses and theoretical models

have been proposed to explain the existence overflow

metabolism, including limited oxygen availability [4],

limited membrane space [5], recycling of cofactors [6],

molecular crowding [7] and protein cost [8�,9,10��].
Potentially related to the protein cost hypothesis, it has

been pointed out that metabolic networks resemble a

minimal biochemical walk and that metabolic pathways

tend to take the shortest possible routes in terms of

reaction steps [36]. However, despite these concepts

and observations, experiments capable of discerning

between these different hypotheses had been largely

lacking.

In a recent work, we quantified overflow metabolism and

energy metabolism for a set of orthogonal perturbations in

order to distinguish between these different hypotheses

[37�]. We discovered a distinct response under carbon

limitation, proteome limitation and energy limitation for

decreasing growth rates. For example, by overexpressing

large quantities of useless protein, we were able to

decrease the threshold growth rate for acetate excretion

and by knocking out flagella proteins we were able to

increase this threshold. The patterns that we found are

consistent with and can be predicted quantitatively using

the protein cost hypothesis, which states that fermenta-

tion requires a lower protein investment per ATP pro-

duced than respiration. Hence, fermentation constitutes a

‘leaner’ pathway that allows faster growth. In our work,

we also directly quantified the protein cost of energy

production via fermentation and respiration by combining

flux measurements and proteomics. Indeed, we found

that fermentation is roughly twice as efficient as respira-

tion in terms of protein cost per ATP flux. The protein

cost or ‘lean production’ argument for preferential utili-

zation of alternative metabolic pathways has also been

applied to the Entner–Doudoroff pathway, which con-

stitutes an alternative glycolytic pathway used by certain

microbes [38��]. The importance of metabolite concen-

trations for thermodynamic driving forces and enzyme

saturation in determining protein cost has been recently

implemented [39].

The patterns characterized in our recent work [37�], are

difficult to reconcile with alternative explanations. For

instance, as characterized in our work, the volume of cells

overexpressing useless protein increases as the inverse of

their growth rate [40]. On the other hand, energy demand

per cell scales like cell size multiplied by growth rate and

should therefore be roughly constant, while the size of the

cells and their surface and membrane area increases with

increasing protein overexpression. Hence, for slow grow-

ing cells, expressing large quantities of useless protein,

both membrane space and oxygen should be abundant,

but these cells nevertheless continue to excrete acetate,

even at growth rates far below the acetate excretion
Current Opinion in Microbiology 2018, 45:77–83 
threshold for carbon limitation. It is important to note

that one exception is the molecular crowding hypothesis

[41], which is mathematically indistinguishable from the

protein cost hypothesis in our formulation, but makes

additional predictions regarding changes in dry mass

density under carbon limitation. We did not observe such

changes in our own measurements [40], but we cannot

exclude that a more precise quantification would be

required to resolve these effects.

Supporting the idea that fermentation directly offers

benefits for maximizing growth rates, we recently showed

that aerobic overexpression of the global transcriptional

regulator ArcA, normally involved in regulation of anaer-

obic growth [31–33], induced acetate excretion, down-

regulated respiratory pathways and resulted in substan-

tially improved growth rates, as compared to wild-type

strains on slow glycolytic carbon sources [34�]. A benefi-

cial effect of fermentation on growth rates would not be

expected from models based on limitations in oxygen or

membrane space, unless growth rates were always limited

by these factors in diverse conditions and at slow growth

rates. ArcA overexpressing strains also have higher carbon

uptake rates, which shows that the shift from fermenta-

tion to respiration on slow carbon sources does not result

from limitations or constraints on carbon uptake rates, as

implemented in some models [10��]. Instead, these find-

ings raise the question why E. coli relies on respiration for

energy production, even in many growth conditions

where the carbon source is highly abundant. Mathemati-

cally, the protein cost model constitutes a tradeoff

between growth rate and biomass yield [37�]. But while

a higher biomass yield is clearly advantageous, resulting

in faster growth, when substrate concentrations are low

and diffusion of the substrate is limiting, it is questionable

if a high-yield strain could directly outcompete a fast

growing strain in any environment with high concentra-

tions of the carbon source [42–44]. Hence, it is not clear

why E. coli and other bacteria do not ferment many

glycolytic substrates and heavily use respiratory path-

ways, even when these carbon sources are highly abun-

dant in their environment.

Tradeoffs and optimality
In the past, changes in gene expression and metabolic

strategies across growth conditions have often been attrib-

uted to the optimization of steady-state growth rates

[10��,17��,18,45]. However, mounting evidence suggests

that cells are capable of significantly faster growth rates in

many conditions, including supposedly ‘poor’ carbon

sources [21��,20]. Based on these observations, it is clear

that objectives other than optimization of steady-state

growth rates must be considered to explain these

phenotypes.

In recent years, there has been an increasing interest in

the role of conflicting objectives in shaping phenotypes.
www.sciencedirect.com
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Shoval et al. argued and illustrated that when facing

competing objectives, phenotypes of biological systems

fall on surfaces of Pareto optimality, where any objective

can only be improved at the detriment of another

[46��,47]. Schuetz et al. observed that 13C-measured

fluxes of nine different bacteria fell close to a surface

of Pareto-optimality, defined by biomass yield, ATP-

yield and the minimization of the sum of absolute fluxes

[48��]. On the genome scale, constraints have been com-

bined with optimality for different objectives to predict

genome-wide patterns of metabolism and gene expres-

sion [8�,49,50] and it was shown that feasible optimal flux

routes can be derived from elementary flux modes [50].

Beyond bacterial growth in constant environments, auto-

catalytic, constraint-based models have also recently been

applied to the time-dependent resource allocation of

cyanobacteria during the day–night cycle [51�].

However, despite these advances, difficulties remain in

identifying objectives of evolutionary importance, as well

as the right experiments to quantify these objectives and

their relevance. There is also a very limited understand-

ing of underlying principles and molecular mechanisms

that result in tradeoffs of evolutionary importance. While

minimizing protein cost for maximizing growth rates or

available proteomic resources is well appreciated and

most likely constitutes an important evolutionary advan-

tage for microorganisms, it is much less clear how pro-

posed objectives like maximizing the yields of various

metabolic processes affect fitness in specific environ-

ments. As a result, many of the changes in gene expres-

sion and metabolic pathways, observed with decreasing

growth rates [2], are only poorly understood today. These

changes include the upregulation of hundreds of genes,

some of which are known to be involved in stress response

[52,53], as well as novel metabolic routes that are not

utilized at higher growth rates like the (P-enolpyruvate)-

glyoxylate cycle [1,54�].

It is likely that diverse tradeoffs shape the regulatory

programs of metabolism in microorganisms [55]. A better

understanding of these tradeoffs would be essential to

help us understand the variation of phenotypes between

growth conditions, as well as the variation between strains

[56]. Moreover, tradeoffs and optimality could give rise to

complex phenomena like bistability, oscillations and

memory effects [57].

Conclusion
In recent years, many different ideas have been proposed

to understand microbial resource allocation and metabolic

strategies. These ideas have already led to a better

understanding of some counterintuitive phenotypes, as

well as important regulatory mechanism like catabolite

repression. Nevertheless, more work needs to be done to

differentiate between competing hypotheses and orthog-

onal perturbations can be useful for that. Coarse-grained,
www.sciencedirect.com 
models have proven to be a valuable addition to genome-

scale models, capable of making quantitative predictions

of cellular phenotypes with only a few phenomenological

parameters. In some cases, these models have also aided

identification of molecular mechanisms like the inhibi-

tion of cAMP signaling by specific metabolites [3��].
Ultimately, the usefulness of various proposed governing

principles should be measured by their ability to make

correct and quantitative predictions for diverse experi-

ments, including novel observations and experimental

perturbations.
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44. Pfeiffer T, Morley A, Nägele T, Hannibal L, Clinic C: An Evolutionary
Perspective on the Crabtree Effect. 2014 http://dx.doi.org/
10.3389/fmolb.2014.00017.
www.sciencedirect.com

http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0340
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0340
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0340
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0345
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0345
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0350
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0350
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0355
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0355
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0355
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0360
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0360
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0365
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0365
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0370
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0370
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0370
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0375
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0375
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0380
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0380
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0380
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0385
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0385
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0385
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0385
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0390
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0390
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0390
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0395
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0395
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0395
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0395
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0395
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0400
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0400
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0400
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0405
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0405
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0405
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0405
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0410
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0410
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0410
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0415
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0415
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0415
http://dx.doi.org/10.1038/srep24834
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0425
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0425
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0430
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0435
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0440
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0445
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0450
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0455
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0460
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0465
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0470
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0475
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0480
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0485
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0490
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0490
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0490
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0490
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0495
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0500
http://refhub.elsevier.com/S1369-5274(17)30156-X/sbref0500
http://dx.doi.org/10.3389/fmolb.2014.00017
http://dx.doi.org/10.3389/fmolb.2014.00017


Governing principles of resource allocation and metabolism Basan 83
45. Marr AG: Growth rate of Escherichia coli. Microbiol Rev 1991,
55:316-333.

46.
��

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E,
Kavanagh K, Alon U: Evolutionary trade-offs, Pareto optimality,
and the geometry of phenotype space. Science 2012, 336:1157-
1160.

This paper argues that Pareto-optimality explains the geometry of phe-
notype spce for many different biological systems.

47. Tendler A, Mayo A, Alon U, Arnold S, Farnsworth K, Niklas K,
Kennedy M, Nagrath D, Avila-Elchiver M, Berthiaume F et al.:
Evolutionary tradeoffs, Pareto optimality and the morphology
of ammonite shells. BMC Syst Biol 2015, 9:12.

48.
��

Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U:
Multidimensional optimality of microbial metabolism. Science
2012, 336:601-604.

This paper investigates the Pareto-optimality of metabolic phenotypes of
microorganism regarding different objective functions.

49. Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, Nölker R,
Mariadassou M, Aymerich S, Hecker M, Noirot P et al.:
Quantitative prediction of genome-wide resource allocation in
bacteria. Metab Eng 2015, 32:232-243.

50. Maarleveld TR, Wortel MT, Olivier BG, Teusink B, Bruggeman FJ:
Interplay between constraints, objectives, and optimality for
genome-scale stoichiometric models. PLOS Comput Biol 2015,
11:e1004166.

51.
�

Reimers A-M, Knoop H, Bockmayr A, Steuer R: Cellular trade-
offs and optimal resource allocation during cyanobacterial
www.sciencedirect.com 
diurnal growth. Proc Natl Acad Sci U S A 2017, 114:E6457-
E6465.

This paper applies concepts of resource allocation and optimality to
cyanobacteria.

52. Battesti A, Majdalani N, Gottesman S: The RpoS-mediated
general stress response in Escherichia coli. Annu Rev Microbiol
2011, 65:189-213.

53. Soares NC, Spät P, Krug K, Macek B: Global dynamics of the
Escherichia coli proteome and phosphoproteome during
growth in minimal medium. J Proteome Res 2013, 12:2611-
2621.

54.
�

Fischer E, Sauer U: A novel metabolic cycle catalyzes glucose
oxidation and anaplerosis in hungry Escherichia coli. J Biol
Chem 2003, 278:46446-46451.

This paper identified a novel respiratory metabolic cycle that is used by
microorganisms like E. coli at slow growth rates.

55. Gerosa L, Kochanowski K, Heinemann M, Sauer U: Dissecting
specific and global transcriptional regulation of bacterial gene
expression. Mol Syst Biol 2014, 9:658.

56. Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM,
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