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A semiconductor 96-microplate platform for
electrical-imaging based high-throughput
phenotypic screening

Shalaka Chitale 1, Wenxuan Wu 1,2, Avik Mukherjee 3, Herbert Lannon 1,
Pooja Suresh1, Ishan Nag1, Christina M. Ambrosi1, Rona S. Gertner4,
Hendrick Melo1, Brendan Powers1, Hollin Wilkins1, Henry Hinton 2,
Michael Cheah1, Zachariah G. Boynton1, Alexander Alexeyev1, Duane Sword1,
Markus Basan 3, Hongkun Park4,5 , DonheeHam 2 & Jeffrey Abbott1,2,4,5

High-content imaging for compound and genetic profiling is popular for
drug discovery but limited to endpoint images of fixed cells. Conversely,
electronic-based devices offer label-free, live cell functional information but
suffer from limited spatial resolution or throughput. Here, we introduce a
semiconductor 96-microplate platform for high-resolution, real-time impe-
dance imaging. Each well features 4096 electrodes at 25 µm spatial resolu-
tion and a miniaturized data interface allows 8× parallel plate operation
(768 total wells) for increased throughput. Electric field impedance mea-
surements capture >20 parameter images including cell barrier, attachment,
flatness, and motility every 15min during experiments. We apply this tech-
nology to characterize 16 cell types, from primary epithelial to suspension
cells, and quantify heterogeneity in mixed co-cultures. Screening 904 com-
pounds across 13 semiconductor microplates reveals 25 distinct responses,
demonstrating the platform’s potential for mechanism of action profiling.
The scalability and translatability of this semiconductor platform expands
high-throughput mechanism of action profiling and phenotypic drug dis-
covery applications.

High-throughput screening is the dominant paradigm for profiling
compounds based on biological activity, toxicity, and mechanism of
action (MOA)1. One of the most informative screening tools is high-
content imaging with feature extraction to create high-dimensional
profiles (e.g., Cell Painting2). However, the technique only produces an
end-point image of fluorescently labeled fixed cells, missing important
characteristics of live cells and tissues. For example, barrier and water
transport properties of epithelia are important for cancer3, fibrosis4,
inflammation5, and cystic diseases6,7, yet they cannot be assessed using
high-content imaging.

Impedance techniques can complement the shortcomings of
imaging, providing live-cell morphology information—such as epi-
thelial barrier properties—in real time, throughout the experiment.
They are non-invasive and label-free8, making them versatile for a
wide range of biological questions without the need for fluorescent
probes or cell line engineering. However, existing impedance
devices, like transepithelial electrical resistance (TEER) assays9 and
other commercial devices (e.g., xCelligence RTCA10 by Agilent
Technologies, Inc., ECIS11 by Applied Biophysics, Inc.), have draw-
backs as they measure only one10 or two11 parameters per well using
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large electrode pairs, compromising both accuracy and interpret-
ability of information content.

Consumer electronic complementary metal-oxide-
semiconductor (CMOS) technology offers a potential solution to
these challenges through integration of thousands of electrodes at
cellular resolutions12. To date however, CMOS impedance-based
measurements have been limited to single well prototypes. To fully
harness the benefits of impedance techniques, they should be pro-
vided not only in high spatial resolution and thus high-accuracy, but
also in a high-throughput form factor to enable the screening and
profiling of compounds, and ultimately the development of novel and
effective therapeutics.

In this work, we present an impedance platform for drug dis-
covery applications that accomplishes both high spatial resolution and
high throughput. By creating a semiconductor 96-microplate using
custom designed CMOS integrated circuits (ICs), we achieve 4096
electrodes/well with a spatial resolution of 25 µm. To enable high
throughput, miniaturized interfacing electronics enable readout
directly inside standard cell culture incubators, accommodating up to
8× semiconductor 96-microplates per incubator. Beyond hardware
specifications, our platform incorporates electric field-based mea-
surements. These techniques capture >20 impedance parameter
images per well at 5–15-min intervals, providing real-time and label-
free insights into awide rangeof live-cellmorphological and functional
properties.

The impact of our impedance platform spans various fields,
including phenotypic discovery, toxicity and profiling assessments,
and general live cell biology research. With its enhanced accuracy,

throughput, andmulti-parametric information, our platformpaves the
way for transformative advancements in drug discovery and cellular
analysis.

Results
Design and optimization of a 96 well CMOS plate, high
throughput platform
To scale and improve spatial resolution and accuracy of impedance
techniques for drug discovery applications, we custom designed a
CMOS IC chip for integration into each well of a standard form factor
96-well plate (Fig. 1a–c). Each individual IC occupies an area of 18 × 18
mm2 to support four wells, therefore a total of 24× ICs aremounted on
a printed circuit board (PCB) to create the 96-microplate at a standard
9mm well to well spacing (Supplementary Fig. 1). Electrical input/
output signals are routed across the IC both horizontally and vertically
to distribute electrical signals from connectors on the bottom side of
the PCB across the plate (Supplementary Fig. 2). For readout and
control, miniaturized interfacing data acquisition (DAQ) electronics
create a universal serial bus (USB) interface to communicate with a
computer.

A custom96-well plastic (polyethylene terephthalate/PET) plate is
attached via epoxy to the mounted CMOS ICs, designed with a stan-
dard form factor to be compatible with high-throughput instruments
such as automated fluid handlers (Fig. 1b). Each well has a 140 µL
maximumcapacity and 120 µLworking volumewith abottomdiameter
of 3.4mm (Fig. 1c). A 64 × 64 array of 4096pixels at a 25 µmpitch at the
bottom of the well results in a 1.6 × 1.6mm2 total sensing area. Each
pixel contains a gold electrode13, a digital memory, and switches to
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Fig. 1 | A semiconductor 96-microplate platform for in-incubator, electro-
chemical high-throughput screening. a Up to 8× complementary metal-oxide-
semiconductor (CMOS) microplates operate in a cell-culture incubator for high-
throughput electrochemical screening. The incubator regulates the ambient tem-
perature, CO2, and humidity. A universal serial bus (USB) and power hub connect
the microplates to an external computer. b Each CMOS microplate contains 96
wells and connects to a miniaturized data acquisition system which forms a USB
interface and provides power. The microplate is designed with standard

dimensions so that it is compatible with wet-lab automation (e.g. automated fluid
pipettes) and other instruments (e.g. centrifuge, plate reader). c At the bottom of
each well is a CMOS integrated circuit (IC) containing an array of 64 × 64 = 4096 Au
electrodes, spaced at a pitch of 25 µm. Embedded circuits scan electrochemical
measurements across the array generating impedance images every 5–15min.d For
high-throughput screening applications, the real-time, live-cell, impedancemovies
are fed through a data science pipeline and combined with known compound
metadata to identify functional phenotypes.
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form connections with peripheral circuits integrated on the CMOS IC
(Supplementary Fig. 3). The pitch of the electrodes allows for near
single-cell resolution, while the total sensing area enables measure-
ments of entire cell sheets, useful for epithelial cell types and tissues.

The IC design and microplate construct represents a major
advancement to state-of-the-art CMOS devices for biological mea-
surement, where the large majority are formed in single well
constructs12; Supplementary Table 1 provides a detailed comparison of
our system to other impedance technologies. Some notable excep-
tions are Maxwell Biosystems AG14 and 3Brain AG15 which sell 6-well
CMOS-based plates for neural applications. Our work is differentiated
in two ways. First, by both forming the CMOS electronic 96-
microplates and miniaturizing interfacing off-plate electronics, we
can perform 8× plate operation (a total of 768 wells) directly in the
incubator using simple power andUSB hubs (Fig. 1a). In contrast, other
CMOS or impedance microplates work off an instrument principle,
where the plates plug into an instrumentation box. This limits mea-
surements to a single plate per instrument11,14,15, or up to 6 plates for a
2-electrodeperwell device10. In principle, our strategy allows scaling to
even higher throughputs of 10 s or 100 s of plates through improved
USB and power hub interfaces. Currently, we run 3 incubators and 24×
CMOS microplates in parallel, with plans to expand in the near future.
Second, we demonstrate impedance techniques capable of measuring
a wide range of cell biology (Fig. 2). These cell-type agnostic cap-
abilities open application areas beyond neuroscience, such as cancer
and epithelial disease screening. Towards this end, the schematic in
Fig. 1d summarizes the platform’s utility for drug discovery applica-
tions via a cloud-based data science pipeline.

Field-based impedance techniques measure unique and ortho-
gonal cell properties
In addition to increasing CMOS-based measurement throughput for
cell biology applications, we advance field-based impedance
techniques12 to measure unique live cell information. We use three
different electric field configurations, two of which are named vertical
field (VF) and lateral field (LF) like our previous work12, but with many
key improvements. Briefly, the VF configuration operates on the
principle of biased nearest neighbor electrodes blocking lateral fields
in solution, therefore causing the measured field to arrange vertically
(Fig. 2a, top). Since our previous work, we’ve optimized the system to
include multiple layers of blocking electrodes to properly arrange the
vertical field. In contrast to the previous 3 × 3 group of electrodes (1
layer of blocking electrodes), we now use a 16 × 16 group of electrodes
biased together and record the center 4 × 4 electrode group simulta-
neously (6 layers of blocking electrodes, Supplementary Fig. 4).
Importantly, the parallel measurement of 4 × 4 = 16 center electrodes
reduces the total scan time by 16×. To complement, the LF config-
uration is also modified to reduce scan time by measuring 16 electro-
des simultaneously; each measured electrode is spaced at least 12
electrodes away from each other to minimize cross-electrode effects
(Supplementary Fig. 5). A new field geometry is also measured, called
the ‘electrode impedance field’, which uses the same pattern as the
lateral field, but measures the current through the active electrode
instead of the nearest neighbor readout electrode (Supplemen-
tary Fig. 5).

Another crucial advancement was to expand beyond using a sin-
gle frequency of 5 kHz12 to simultaneous measurement of four fre-
quencies of 250Hz, 1 kHz, 4 kHz, and 16 kHz. Impedance of the cell
membrane is inversely proportional to the measurement frequency
(the lipid bilayer acts as a capacitor), which results in distinct features
of the cells measured at different frequencies8,16. Therefore, for each
fieldmeasurement, four frequency signals are digitally added together
and applied to the active electrode(s). A Fast-Fourier Transform (FFT)
then calculates the four frequencymagnitudes andphases and aDirect
Current magnitude to create 9 impedance parameter maps—27 total

maps when measuring all 3 field configurations (Methods). The
simultaneous multi-frequency approach is faster than sweeping the
frequency to reduce scan time16 and the upper frequency (16 kHz) is
limited by our amplifier bandwidth. In comparison to other works
which measure high frequency (>1MHz) cross electrode capacitance17

or paired electrode capacitance changes18, our field-based impedance
measurements distinguish multiple low-frequency tissue and cell
parameters far away from the Debye capacitance sensing region, as
discussed below. Higher frequency field measurements could accom-
plish similar capacitive sensing17,18 to reveal different cell properties8,16,
but would require higher bandwidth op-amps at the tradeoff of more
power consumption.

The three new field biasing schemes were enabled by the flex-
ibility of pixel to peripheral circuit connections of the CMOS IC design
(Supplementary Fig. 3) and were critical to enabling real-time mea-
surement across the 96-microplate. The total scan time is a function of
the lowest measured frequency (at least 4ms per electrode for a
250Hz cycle), total electrodes and number measured simultaneously
(4096 electrodes total with 16 measured at a time), configuration
programming time, and number of wells measured simultaneously (6
wells total)16. Each field geometry takes 40 s to scan the full plate; the 3
fields are typically performed in sequence resulting in 120 s (2min) for
a full scan of the 27 impedance parameters. For most cell types and
experiments, we found that performing full scans every 15min bal-
ances total data size (~17 GByte/72 h experiment) and time-course
resolution. For scaling arrays to more electrodes while maintaining a
similar scan time, the lowest frequency measured could be increased,
or improved electronics could be implemented to scan more electro-
des and/or wells simultaneously16.

To connect the impedancemeasurements to cellmorphology and
function, and to demonstrate the orthogonality of the new field-based
impedance parameters, we highlight an experiment in Fig. 2 using
MDCK cells, an epithelial cell line that forms a strong cell barrier and
has demonstrated apical to basal water transport resulting in tissue
doming19,20. At lower frequencies (250Hz, 1 kHz), the capacitive nature
of the cell membrane’s lipid bilayer results in a very high impedance—
in the VF, this causes the field to pass through intercellular spaces
resulting inmeasurement of the permeability of the tissueorbarrier. In
theMDCK experiment, an increasing VF 250Hzmagnitude is observed
after confluency is reached reflecting the process of tight junction
formation21 and reaches a peak after the onset of water transport22.

At higher frequencies (4 kHz, 16 kHz), the fields are sensitive to
membranes in closer proximity to the electrodes. For the VF config-
uration, high frequency signals reflect cell flatness (or the inverse of
height): the flatter the cell, the more cell membranes are near the
electrode increasing the impedance. To this end, a spike in the VF
16 kHz magnitude is observed in the experiment shortly after plating,
attributed to the suspended cells falling to the surface and spreading23.
In the high frequency LF, cell substrate attachment is measured with
high sensitivity: the closer the cells are to the electrode, the higher the
LF 16 kHz magnitude. In the MDCK experiment, the cells reach con-
fluence and attach strongly to the surface followed by a rapid
detachment with the onset of water transport. The water transport
process can be accelerated bymedia changes, as in Fig. 2b, and is also
affected by plating density (Supplementary Fig. 6 and Supplementary
Movie 1).

The different trends observed across the four examples in Fig. 2b
are supportive that informationmeasured at the different frequencies
andfields is orthogonal in nature. Inour previouswork12, we found that
our oldVF and LF configurations at a single frequency often resulted in
similar impedance trends. The new biasing schemes and multi-
frequency analysis greatly extends the ability to extract high dimen-
sional morphology data in parallel.

Beyond magnitude trends of fields and frequencies, another
capability of our system that is currently not available in other
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impedance devices is the spatial resolution of our measurements. This
generates electrical images of each well across each impedance para-
meters and can be analyzed similar to optical images.

Spatial features that can be extracted from the data include con-
fluence, which is calculated as the percentage area covered by cells
determined using a threshold (Fig. 2a,Methods). Cell locations are also
used to mask impedance maps to account for differences in con-
fluency and to omit data from non-covered electrodes—improving
accuracy beyond traditional aggregate well techniques9–11. For

assessment of properties like cell-barrier, this extraction of data from
only places with cells allows decreases of tissue barrier and cell-cell
adhesion to be detected and differentiated from toxicity. In contrast,
with single-electrode pair techniques9–11, any decrease in confluency
will shunt the measurement and result in a decreased barrier/impe-
dance measurement.

Another unique parameter that is enabled in our system is the
measurement of transient features like motility. The root mean square
(RMS) of the difference from one measurement frame to another is
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of measured electric field lines are shown between stimulation (dark gray) and
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the plate. The most representative biological parameter is labeled for each mea-
surement, but a blendof biological parameters contributes to eachmeasurement in
total. Source data are provided as a source data file. c Impedance images of the
MDCK cells from a single well at the indicated time points. The images were gen-
erated with VF 250Hz in red, VF 16 kHz in green, and the inverse of the LF 16 kHz
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used for parameterizing transient features such as motility/movement
and migration (Fig. 2a, Methods). Assessment of cell movement
innately requires time and spatial resolution, therefore other techni-
ques such as end-point fluorescent imaging or aggregate well impe-
dance techniques cannot detect such live cell motility.

Lastly, spatial resolution enabled detection of tissue doming in
MDCK cells (Fig. 2c)19,20; a transient and dynamic phenomenon in
which transepithelial water transport leads to areas of increased
water pressure under the cell sheet. This causes regions of the cell
sheet to lift off in dome-shaped structures. In our measurements,
we observe domes as circular decreases in attachment signals,
represented in the bottom image of Fig. 2c as purple dots of ~150 µm
diameter.

Using impedance measurements to characterize a range of
cell types
To test the sensitivity and versatility of our platform, wemeasured a
wide range of well characterized cell types on our platform, span-
ning from primary epithelial cells to cancer epithelial cells, to sus-
pension cells (Fig. 3). The cell types originate from the kidney, brain
endothelial/blood brain barrier (BBB), skin, liver, colon, lung,

breast, and bone marrow/leukemia and are of human origin, except
the MDCK cells which are canine origin. The impedance techniques
measured characteristics of all tested cells (Fig. 3a); Supplementary
Fig. 6 shows real-time traces for various plating densities (typically
10,000 to 40,000 cells/well) and Supplementary Movie 1 shows an
example well for each density and 11 cell types for the first 48 h of
culture growth.

The epithelial cells exhibited a strong attachment to the sub-
strate and formed a continuous sheet with many tight cell-cell
junctions that create a high barrier when confluent (Fig. 3a). Beyond
MDCK, these cell types include Caco-2 (colon cancer cells that are
used as a model of intestinal barrier and inflammation24), Calu-3
(lung adenocarcinoma cells used as a model of bronchial barrier25),
and MCF-7 (luminal A type breast cancer cells exhibiting differ-
entiated mammary epithelium properties26,27). In contrast, a variety
of cell types from similar human tissue origins did not create bar-
riers. These cell types include HepG2 (hepatocellular carcinoma),
T84 (metastatic colon carcinoma), HaCat (immortalized human
keratinocytes), A549 (lung adenocarcinoma cells derived from
alveoli28), andMDA-MB-231 (triple negative breast cancer cells29). To
complement the cancer cells, hCMEC/D3 (brain endothelial cells
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Fig. 3 | Impedance measurements differentiate a wide variety of cell types and
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in tissue barrier (VF 250Hz), cell-substrate attachment (LF 16 kHz), andmovement/
dynamic changes in morphology (RMS). Each data point represents a given mea-
surement for a single well at a single timepoint from 0h (blue) to 48h (red). The
shape of the violin plot represents the underlying distribution of datapoints over
time. Real-time movies for all cell types at different seeding densities are shown in
Supplementary Movie 1. b Immunofluorescence images (left) and impedance
images (right) for various cell types show a range of epithelial tissue properties.

Cellswere stained for E-Cadherin (green), a cell-cell adhesion protein, and for DAPI/
nucleus (red). Immunofluorescence imaging was performed in 4 independent
experiments, representative images from a single experiment are shown here. A
representativewell impedance image combines several impedanceparameters into
different colors (noted). Cells strongly expressing E-Cadherin at cell-cell interfaces
(MDCK, Caco-2, MCF-7) show high tissue barrier in comparison to cells with dis-
persed E-Cadherin (A549) or no expression (MDA-MB-231). c, d Radar plots com-
paring the functional indices of the indicated cell lines across 7 cell lines
characteristics; the radial axis is scaled from 0-1. Source data are provided as a
source data file.
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used for modeling BBB function30) exhibited the highest motility of
any cell type (see also Supplementary Movie 1).

Finally, K-562 (chronic myelogenous leukemia cells grown in
suspension) were effectively measured and the presence of live cells
above the electrodes identified. Traditionally, impedance measure-
ments areonly sensitive to adherent cells that are in direct contactwith
electrodes. However, our use of field-based techniques across the
almost single-cell resolution array allows detection an estimated
~10–20 µmfromthedevice surface12. As expected, suspension cells had
the lowest cell attachment signal of all the tested cell types and did not
form an epithelial sheet/connected tissue (Supplementary Movie 1).

Our platform’s morphology measurements help identify
important functional differences between cell types. For example,
by using different low-frequencies in the VF, we can distinguish
between tissue barrier and local adhesion at cell-cell junctions. We
found that the VF 250Hz measurement assesses the integrity of
tissue barrier across an ~200 µm region, while the VF 1 kHz mea-
surement focuses on local cell-cell adhesions. Immunofluorescence
imaging for representative cell types helped form this correlation
by detecting expression and localization of E-cadherin, a functional
component of adherens junctions expressed in epithelia (Fig. 3b).
Loss of E-cadherin can cause dedifferentiation and invasiveness in
human carcinomas and is observed in cancer cells that have
undergone epithelial to mesenchymal transition (EMT)31. We
observed that cell types with high-levels of membrane E-cadherin
and a regular epithelial morphology (MDCK, Caco-2, and MCF-7)
showed a strong tissue barrier signal, displayed in the radar plot of
Fig. 3c. In contrast, cells types like MDA-MB-231 which had unde-
tectable levels of E-cadherin, did not exhibit signals for tissue bar-
rier or local cell-cell adhesion. Interestingly, cell types such as A549,
which lacked a tissue barrier signal, still displayed measurable cell-
cell adhesion (Fig. 3c), indicating lower and more dispersed
E-Cadherin levels (Fig. 3b). This correlation demonstrates how the
multi-parametric, spatial approach of our platform provides a more
comprehensive understanding of cell sheet properties compared to
traditional techniques like the transwell assay9, which only provides
a global TEER readout. Furthermore, our other field-based impe-
dance measurements assess unique morphological and dynamic
properties such as cell flatness, surface attachment, short-term
movement, long-term movement and growth rate, thereby enhan-
cing our capability to distinguish functional differences (Fig. 3c).

To this end, other impedance methods have also reported dif-
ferences between cell types based on impedance readouts9,32–35. For
example, our observation that Calu-3 cells have a higher barrier than
A549 cells was previously observed using a multi-well impedance
device (Axion Biosystems)33 and by conventional trans-well TEER
measurements35. However, we additionally observe that A549 cells
have a higher attachment and motility than Calu-3 cells, features that
other impedance techniques cannot observe. Of note, the normalized
barrier resistance taking into consideration the effective unit area of
each electrode [25 × 25 µm2] for Calu-3 (~200Ω·cm2) and A549
(~20Ω·cm2) match value ranges from various literature sources using
traditional TEER readouts35, thus validating ourmeasurementmethod.

To underscore the platform’s capability in assessing live-cell
function, we compared additional cell types from different tissues,
each with distinct characteristics (Fig. 3d). For instance, hCMEC/D3
cells exhibit the highest short-term movement, HepG2 cells demon-
strate high surface attachment, HaCat cells show the fastest growth
rate and long-term movement, while T84 cells appear notably flat. To
enhance this comprehensive functional assessment ability, we also
demonstrated that our semiconductor 96-microplate is compatible
with surface coatings such as collagen, fibronectin, and Poly-D-Lysine
(PDL), commonly used to mimic extracellular matrix signaling of
in vivo conditions36. Measurement of Caco-2 cells in wells with or
without a collagen type I coating (Supplementary Fig. 7) revealed

similar growth and tissue barrier characteristics. Interestingly, a small
difference in attachment was observed, reflecting the increased dis-
tance of the cells from the electrode due to the coating, further
highlighting the sensitivity of our technique.

Assessing culture heterogeneity in the context of epithelial-to-
mesenchymal transition (EMT)
The high spatial and temporal resolutions of our platform can be used
to study the heterogeneity of mixtures of epithelial and mesenchymal
cell populations. EMT is a well-documented phenomenon associated
with cancer and fibrosis, characterized by the progression of cancers
to a more aggressive state and an increased probability of
metastases37. During EMT, epithelial cells lose their barrier, undergo
morphological changes, and acquire enhancedmigration and invasion
properties38. This transition occurs gradually, resulting in hetero-
genous cell populations. Tomodel this process,we selected twobreast
cancer cell lines (Fig. 2a, b):MCF-7 shows anepithelialmorphology and
expression of E-cadherin while MDA-MB-231 shows a mesenchymal
phenotype with no expression of E-Cadherin29. Of note, currently used
impedance devices have been unable to distinguish between these cell
types in head-to-head comparisons32. We plated MCF-7 and MDA-MB-
231 cells at a low-plating density (10,000 total cells per well) and dif-
ferent ratios tomeasuredifferences in growth characteristics over 72 h
(Fig. 4 and Methods).

Of the measurement parameters, we found that the RMS para-
meter, indicative of short-term movement, was able to best differ-
entiate the cultures. RMS impedance images at 24h show an
intermediate range of cell movements for the 5000:5000 mixed
population in comparison to the low movement from the pure MCF-7
(epithelial) and high movement of the pure MDA-MB-231 (mesenchy-
mal) cultures (Fig. 4a). Over time, the distribution of the mixed
population transitions from an almost 50/50 split between the pure
distributions, to more MDA-MB-231 at 72 h (Fig. 4b). Quantification of
the degree of similarity to pure population training distributions
(Fig. 4c, Methods) shows the culture dynamics over time: for the
5000:5000 mix, an almost equal contribution of pure cell types (a
0.5 similarity score for both) transitions to an increasing MDA-MB-231
contribution (similarity score approaching 1) and decreasing MCF-7
contribution (similarity score approaching 0). This is attributed to the
MDA-MB-231 cells having a faster growth rate as compared to MCF-7
cells within the co-culture. Co-cultures starting with fewer or more
MDA-MB-231 cells show different starting contributions and extents of
culture takeover; the model is also validated using pure test cultures
(Fig. 3c, top and bottom).

Leveraging spatial information to assess population statistics over
time can reveal subtle responses of culture sub-populations to stimuli
and are more sensitive than cumulative, aggregate well readout
approaches. For example, though previous literature could assess the
‘energy’ of a culture to compare cancerous versus non-cancerous cell
types32, they are not able to perform population statistics within the
well itself to assess heterogeneity as there is no spatial information.

Exploring the platform as a tool for drug discovery
Having established our platform’s sensitivity to measure inherent
differences in cell morphology and function, we performed com-
pound screening across three distinct cell-types: MDCK (primary
epithelial), A549 (cancer, epithelial-like), and MDA-MB-231 (cancer,
mesenchymal). Our goal was to assess the effects of a common set
of compounds targeting a variety of cellular processes such as cell
division, DNA replication and inflammation to explore the range of
functional phenotypes that can be observed (chosen compounds
include Cytochalasin D, Vinblastine Sulfate, Paclitaxel, Alisertib,
Bosutinib, Anisomycin, Dexamethasone, Getfitinib, Decitabine,
Cyclophosphamide Monohydrate, and GSK 269962 A). Supple-
mentary Figs. 8–10 show line traces of the measurements and
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Supplementary Movies 2–4 provide well-plate movies of the pre-
and post-compound effects over 72 h.

As highlighted in Fig. 2, MDCK cells are primary epithelial cells
that form a strong barrier, exhibit a dynamic water transport phe-
nomenon, and have low motility due to their formation of a tight
epithelial sheet. Consistent with these inherent properties, we
observed compounds that modulated barrier function (e.g., Cyto-
chalasin D, Vinblastine Sulfate, Anisomycin) and water transport
(e.g., Alisertib, Bosutinib) (Supplementary Fig. 8). These latter
findings were particularly interesting as they correlated with in vivo
results for autosomal dominant polycystic kidney disease (ADPKD).
In humans, ADPKD involves cell overgrowth and a dysregulation of
water transport function, resulting in fluid accumulation in cysts39.
In our MDCK drug treatments, we found that Alisertib, an Aurora
kinase inhibitor, enhanced water transport as evidenced by a sharp
decrease in cell surface attachment and increased doming (Fig. 5
and Supplementary Movie 2). In contrast, Bosutinib, a multi-kinase
inhibitor, hindered water transport as indicated by slower detach-
ment of cells and the absence of domes. Interestingly, Alisertib
has been shown to exacerbate ADPKD in animal models40 while

Bosutinib was in Phase II clinical trials for treatment of ADPKD41.
These in vivo findings align with our observed differential sig-
natures in MDCK cells, underscoring the therapeutic implications
of our innovative water transport measurement technique.

A549 cells demonstrated the ability to differentiate MOAs for
drugs with similar outcomes42. For example, Paclitaxel and Vinblastine,
which caused similar amounts of cell death, exhibited distinct dynamic
changes in other morphological properties, such as surface attach-
ment (Supplementary Fig. 9, Supplementary Results). This capacity to
differentiate MOA using multiple measured parameters suggested the
potential of our platform in large-scale phenotypic profiling for drug
discovery. Additionally, our study emphasized the significance of
selecting the appropriate cell type when screening compounds. For
instance, Dexamethasone, an anti-inflammatory compound that has
been studied in the context of EMT, caused a decrease inmotility in the
mesenchymal MDA-MB-231 cell type43, while it increased cell-cell
adhesion in the epithelial-like A549 cells44 (Supplementary Figs. 9, 10
and Supplementary Results). These results stress the importance of
choosing the most suitable cell-type to capture the range of pheno-
types relevant to the disease or biological question of interest.
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Compound profiling and mechanism of action (MOA) identifi-
cation using high-dimensional impedance measurements
To expand our study and explore the full capabilities of our platform,
we performed high-dimensional phenotypic profiling of compound
responses using live-cells. For the proof of concept, we chose to screen
against A549 cells for their intermediate values across many mor-
phological parameters (Fig. 3c) and large dynamic range of compound
responses42 (Supplementary Fig. 9). The screening involved 904
compounds applied across 13 semiconductor 96-microplates, includ-
ing FDA approved compounds and a subset from a targeted diversity
library. To ensure robustness, we incorporated five positive controls
onto each plate.

Compound activity was first gauged using a phenoactivity score42,
calculated as the overall response across all parameters from the
DMSO negative control (Methods). Of the 904 compounds applied,
600 had phenoactivity that were significantly above the variability of
the range of DMSO responses (outside of the DMSO mean± 2σ).
Compounds with low phenoactivity (within the DMSO mean± 2σ)
were labeled as ‘no response’ due to their overlap with the negative
control (Fig. 6a). A histogram of the phenoactivities in Fig. 6b shows
the DMSO cutoff; of note, the positive controls exhibited a range of
phenoactivities from subtle to highly distinct.

To evaluate the reproducibility and robustness of identified phe-
notypic signatures, we then performed a principal component analysis
(PCA) to assess measured response variance (Methods). The unbiased
PCA generates a space thatmaximizes variance—the co-locationwithin

the PCA space of the positive control replicates emphasizes the
robustness of our impedance-based data acquisition approach (Sup-
plementary Fig. 11). Furthermore, we explored the use of a linear dis-
criminant analysis (LDA) model to determine if the positive controls
could be clustered by their measurement signatures. The positive
control data was split into training and test data sets (Methods); after
training, the model assigned clusters with a precision score of 1, con-
firming distinct and separable signatures (Fig. 6c).

A similar approach was then adopted to assess the more diverse
effects of the compound library. Unbiased clustering using the PCA
identified compounds with similar effects on cell state. Notably, many
clusters exhibited similar target and pathway annotations, indicating
the ability to relate functional changes to specific targets orMOAs. The
clusterswere then used to train an LDAmodel (Fig. 6a), resulting in the
differentiation of 25 distinct compound response clusters, including 1
no response/DMSO cluster and 5 positive control clusters. The model
was then validated in twoways. First, we tested that randomly assigned
labels did not form distinct clusters using the same LDA model para-
meters, obviating the curse of dimensionality1 (Supplementary Fig. 12).
Second, we divided the data set into a training and test set. Com-
pounds were assigned to the correct cluster with a precision score of
0.68, which reflects a high accuracy for single replicates of diverse
compounds (Supplementary Fig. 13).

All the compounds screened are annotated with well-
characterized bioactivity (details in Methods). Thus, we were able to
retroactively use the known bioactivity to examine functions that
clustered together based on their effects on cells. In some cases,
compounds with the same annotated MOA cluster together, pointing
to a similar effect on cell state. However, compounds with different
MOA may also cluster together, based on their effect on related
functional/morphological pathways. To gain deeper insights into the
separation of compounds into specific clusters and their effects on cell
state, we examined time traces for selected clusters (Fig. 6d). The
traces showed orthogonal measurements across the morphological
parameters, differing in both magnitude and behavior over time. To
facilitate comparison, we summarized the time traces using quantita-
tive metrics termed bio-basis (Fig. 6e, details in Methods). Radar plots
revealed the strength of our technology in classifying compounds
causing cell death. Of the 6 clusters highlighted, 4 consist of com-
pounds that affect cell proliferation or cause cell death through inhi-
biting DNA synthesis or cell cycle (clusters 1, 2, 3 and 5). In addition to
the effects on cell confluence, each cluster exhibited distinct mor-
phological effects and therefore varied bio-basis specific to their
respective MOA. Compounds targeting microtubules (cytoskeletal
signaling) or causing G2/M arrest (cluster 1, Supplementary Table 2)
affect cell shape as measured by flatness. DNA synthesis inhibitors
(nucleotide analogs) (cluster 2) primarily affect cell attachment and
dynamicity. Compounds that either induce or inhibit the repair of
double strandedDNAbreaks (cluster 3), one of themost lethal types of
DNA lesions, produce the highest cell death rate and a significant loss
in attachment during cell death. CDK inhibitors (cluster 5) affect bar-
rier strength, cell flatness and staticity (reduced cell movement).
Cluster 6, comprised of various kinase inhibitors, causes a rapid and
drastic loss in barrier, attachment, and movement. These functional
insights provide new information on effects of known compounds and
can help link unknown compounds to specific cellular pathways.
Additionally, we identified a cluster primarily composed of GPCRs
involved in neuronal signaling (cluster 4), which displayed a subtle yet
rapid detachment response. This type of transient response can only
be captured by our platform’s high spatial and temporal resolution
across parameters.

In conclusion, we demonstrate our platform’s immense potential
for compound profiling and broad applications in phenotypic assays
for drug discovery. The high-dimensional data generated, coupled
with the spatial and temporal resolution, enables the characterization

a

Time from drugs (hrs)

-100
480 24

0

-50

At
ta

ch
m

en
t

∆L
F 

16
 k

H
z 

(%
)c

Bosutinib 10 μM
Control
Alisertib 1 μM

+50

Al
is

er
tib

Bo
su

tin
ib

C
on

tro
l

LF 16 kHz
Detach

Flatness

VF 16 kHz
Barr

ier

VF 25
0 H

z

pre-compound +12 hrs +30 hrs +48 hrs

500 μm

b

dome

Fig. 5 | Water transport phenotype for ADPKD drug discovery applications.
a, b A set of 10 compounds were tested against the water transport phenotype
exhibited inMDCK (canine kidney) cells; SupplementaryMovie 2 shows the full 96-
well CMOS microplate movie. Select time point electrochemical images for 1 of 3
replicates for Alisertib (1 µM) and Bosutinib (10 µM) are shown in (a) with a color-
map in (b). Domes were only observed for tissues treated with Alisertib. c Line
traces show Alisertib accelerated and Bosutinib delayed the water transport
detachment (LF 16 kHz) with respect to the control; mean ± s.d. for 3 wells per
condition. The differential results match animal study results (Main text) for
autosomal dominant polycystic kidney disease (ADPKD), suggesting the water
transport phenotype could be predictive of ADPKD efficacy. Source data are pro-
vided as a source data file.

Article https://doi.org/10.1038/s41467-023-43333-9

Nature Communications |         (2023) 14:7576 8



of compound responses and the identification of distinct phenotypic
signatures associated with specific targets or MOA.

Discussion
In this work, we describe the design and implementation of a custom
semiconductor 96-microplate device with the potential to scale to a
high-throughput screening system. We demonstrate its ability to
measure a wide range of cell types using impedance measurement
techniques and accurately distinguish between an array of biological
responses to compounds. Furthermore, we perform a proof-of-
concept screen to demonstrate its utility in drug discovery and the
power of high dimensional data in identifying and profiling compound
MOA. Altogether, our work significantly enhances the capabilities of
impedance devices in drug discovery and cell biology research.

Scalability and versatility are crucial attributes for a technology
employed in drug discovery. Ourminiaturized data acquisition system
allows parallel operation of multiple plates directly in the incubator,
enabling unlimited scalability. In contrast, other impedance devices
utilize an instrument design where plates plug into a box for mea-
surement, reducing scalability. For eventual utility in drug discovery
where 10,000 s of compounds are routinely screened, additional
miniaturization of our 96-microplate tomore dense form factors (e.g.,
384 wells per plate) and/or more plates per incubator setup will be
required. Major considerations to achieve this scale include manage-
ment of high-speed data interfaces, thermal considerations with elec-
tronic power, and data processing pipelines.

In addition to scale, our measurement techniques reveal unique
insights into cell function for versatile cell biology applications. Cur-
rently, CMOS devices are used mostly for neural applications, while
most macroscale electrode impedance devices are only able to mea-
sure a bulk impedance signal per well and lack the ability to measure

orthogonal parameters in diverse cell types. Multiple biological pro-
cesses such as cell death, loss of barrier, and change in attachment of
cells are all reflected in the change in impedance per well and cannot
be deconvolved. By combining field geometries and frequencies, we
can measure distinct independent properties such as cell death, bar-
rier, attachment, flatness, and motility. With the capability to measure
over 20 morphological properties of live cells, our platform can build
an information rich understanding of cell state.

Comparing our platform to other methods, high-content imaging
with feature extraction (e.g., Cell Painting2), is the only other cell-based
measurement approach capable of providing similar data dimension-
ality. However, the speed of image acquisition and limitations in
phototoxicity/bleaching make it unsuitable for capturing dynamic
morphological changes of live cells. Further, the properties of cells
that can be acquired are constrained by the organelles that can be
fluorescently stained and cell types are often chosen for ease of ima-
ging (e.g. U-2 OS). By contrast, our platform canmeasure any cell type,
label-free. Thus, our device can bring high-dimensionality assessment
to a wide variety of disease and cell biology areas.

Data robustness and reproducibility are crucial for high-
throughput drug discovery applications. Real time monitoring allows
us to assess cell state before compound addition, which is not possible
with end-point assays such as high-content imagingwhich requires cell
fixing. By ensuring a similar starting cell state and monitoring of
positive controls, we reduce the overall variability in data. For exam-
ple, pre-compound summary statistics for the 13-plate proof-of-
concept screen of Fig. 6 are compared in Supplementary Fig. 14, and
unbiased and trained positive control replicate analysis are in Sup-
plementary Fig. 11 and Fig. 6c. Outlier wells are identified even before
compound addition using a cell-readiness assessment dashboard in
our data science environment.
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For novel drug discovery applications, our platform is the only
technology offering a functional readout for water transport. The
strong correlation observed between compound responses and water
transport phenotypes of MDCK cells (Fig. 5 and Supplementary
Movie 2) to animal and human studies of ADPKD, suggests potential
applications for ADPKD screening7. Moreover, water transport-related
phenotypes in other cell types, such as Caco-2 (as demonstrated in
Supplementary Fig. 15 with drug-induced doming) and Calu-3, could
serve as effective models for diseases like chronic diarrhea or cystic
fibrosis. Furthermore, our platform’s ability to separate toxicity, tissue
barrier, and cell-cell adhesion properties could find strong utility in
screening for compounds that enhance barrier tightness in context of
gut diseases such as inflammatory bowel disease (IBD) or Crohn’s
disease45,46.

The real-time, functional readouts provided by our platform
enable the observation of cell state changes over time, providing
valuable information on the intermediate and transient cell states in
drug responses. This capability is particularly useful for determining
cell death MOA: as cell death is innately a physical process, our plat-
form is highly sensitive to the morphology of cell death and its ‘order
of operations’47. The ability to profileMOA in a label-freemanner could
find extensive use in in vitro toxicology, which often relies on end-
point readouts that are blind to cell state transitions and potential off-
target activities48. Identifying compound MOAs at the initial stage of
high-throughput screening will dramatically reduce the time to lead
selection and optimization, and ultimately make pre-clinical drug
discovery more efficient and predictive of in vivo effects.

Methods
Cell culture and seeding
All cell lines were obtained from ATCC (unless otherwise noted) and
maintained in a humidified incubator at 37 C and 5% CO2. MCF-7 (HTB-
22), A549 (CCL-185), MDA-MB-231 (HTB-26), MDCK (CCL-34), Calu-3
(HTB-55), U-2 OS (HTB-96), T84 (CCL-248), HaCaT (T0020001,
AddexBio), and HCT116 (CCL-247) cells were cultured in DMEM
(10017CV, Corning) supplemented with 10% FBS (35011CV, Corning).
Caco-2 (HTB-37) cells were cultured in EMEM (10010CV, Corning)
supplemented with 20% FBS. HepG2 (HB-8065) cells were cultured in
EMEM supplemented with 10% FBS. K-562 (CCL-243) cells were cul-
tured in IMDM (12440053, Gibco) supplemented with 10% FBS. HT-29
(HTB-38) cells were cultured inMcCoy’s 5 Amedium (1660082, Gibco)
supplemented with 10% FBS. hCMEC/D3 (SCC066, Sigma Aldrich) and
HBEC-5i (CRL-3245) cells were cultured in EndoGRO (SCME004, Sigma
Aldrich).

Cell lines were seeded in the semiconductor 96-microplates at
various densities as indicated. Plates were coated with Collagen I from
rat tail (354236, Corning) according to themanufacturer’s instructions.
All measurements, both pre- and post-compound treatment were
performed in an incubator regulating CO2, humidity, and temperature.

Immunofluorescence imaging
For immunofluorescence imaging of Fig. 3, cells were grown on glass
coverslips and allowed to grow for 48 h. Cells were then fixed in 4%
paraformaldehyde (19943.K2, Thermo Fisher), washed, permeabilized
with 0.5% Triton-X 100 (A16046.AP, Thermo Fisher) in PBS (21040CV,
Corning), and then subjected to antibody incubation. The antibodies
used was anti-E-Cadherin (3195 T, Cell Signaling Technology, 1:500)
and Goat anti-Rabbit (H + L) Highly Cross-Adsorbed Secondary Anti-
body, Alexa Fluor Plus 488 (A32731TR, Invitrogen, 1:1000). Coverslips
weremounted inVectashield antifademountingmediumwithDAPI (H-
1800, Vector Laboratories).

Imaging was performed using a Yokogawa W1 spinning disk
confocal on an inverted Nikon Ti fluorescence microscope equipped
with Hamamatsu ORCA-Fusion BT CMOS camera (6.5 µm2 photo-
diode), Lumencor SOLAfluorescence light source, andNikon LUN-FXL

solid state laser combiner: 405 nm (80mW), 445 nm (35mW), 488nm
(80mW), 514 nm (50mW), 561 nm (65mW), 640nm (60mW). Imaging
was done using the widefield modality of the microscope with a 20X
dry objective.

Impedance measurements
To accomplish the field-based impedance measurements across mul-
tiple frequencies, we apply a voltage stimulation which is the sum-
mation of the four different frequency signals and measure return
currents using a transimpedance amplifier (TIA) with a feedback gain
(R2 in Supplementary Fig. 3) of 18 MΩ. The magnitudes of the AC
voltage signals are scaled to create similar output amplitudes that are
measured by the TIA (0.2V/250Hz, 0.08 V/1 kHz, 0.04 V/4 kHz, and
0.02 V/16 kHz for lateral field, 0.25 V/250Hz, 0.1 V/1 kHz, 0.04 V/4 kHz,
and 0.025 V/16 kHz for vertical field). Six of the 96 wells are scanned at
a time taking 2.5 s, resulting in a total scan time across the well plate of
40 s. A fast Fourier transform (FFT) is used to extract the magnitude
and phase of each of the four frequencies and the DC component—9
impedance parameter maps for each field configuration. We observe
that different frequencies contain different types of biological infor-
mation (highlighted in Fig. 2) but are still biologically understanding
the extant of information captured across the magnitude, phase, and
DC information.

Cell location masking, confluence, and root-mean-square (RMS)
calculation
A reference impedance map is used to determine the location of cells
by setting a threshold above the electrodes’ default impedance in
solution. The presence of a cell above an electrode will then increase
the impedance beyond the threshold for detection. The mapping of
electrodes occupied by cells is referred to as the cell mask. Typically,
the VF 4 kHz map provides the best contrast for generating the cell
mask. The cell mask is then used to calculate confluence as a percen-
tage of electrodes occupied by cells for a given well. For magnitude,
phase, and DC measurements, the median value of pixels with cells is
then calculated. Additional metrics of the well distributions are being
explored (e.g. standard deviation, 10%/90% distribution markers) but
are not reported in this work. An additional epoxymask is calculated in
a similarmanner as the cellmask to remove pixelswhichhave spillover
epoxy from the plastic well plate attachment, as seen in Supplemen-
tary Movie 4 as yellow regions. Before each cell plating, a reference
measurement is taken in empty culture media to calculate the cell
mask and epoxy mask.

Transient features such as motility and migration are generated
from the impedance movies through a root-mean-square (RMS) cal-
culation. For these calculations, only the epoxy mask is applied. The
difference between two image frames is taken, then the RMS calcula-
tion is performed across the pixels of the differencemap. To normalize
for changes in magnitude, the calculated RMS is then divided by the
median value of the cell-masked well distribution. The VF 4 kHzmap is
used for the RMS parameter generation throughout this paper.

Statistics and reproducibility
All measurements done on the device include at least three technical
replicates on each plate, unless otherwise noted as in the drug screen.
Data from wells that were electronically faulty was excluded from the
analysis. Parameters for exclusion were predefined. Electronically
faulty wells resulted in no signal/ saturating signal. No statistical
methodwas used to predetermine sample size. The investigators were
not blinded to allocation during experiments and outcome
assessment.

Population statistics calculation
For the experiment in Fig. 4, MCF-7 and MDA-MB-231 cells were co-
cultured in the same wells at different starting densities (MCF-7/MDA-
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MB-231) of 2500/7500, 5000/5000, 7500/2500, 0/10,000, and
10,000/0 cells per well, respectively. The pure populations of either
cell type were used as controls for the experiment. Empirical dis-
tributions of each of the experimental conditions were created by
randomly selecting 3 wells for each of the starting conditions for the
RMS (short-term movement) measurement. Reference distributions
were generated by selecting 3 additional wells for each of the pure cell
cultures.Wasserstein distance (earthmover’s distance) was calculated,
at each time point for each experimental distribution to both the
reference distributions. The complement of the ratio of the two dis-
tances was then computed as a measure of the relative distance of the
experimental distribution to the reference distributions.

Compound treatments
Compound treatments were performed using a half media exchange.
Compounds were prepared at 2X concentration in cell culture media,
and the 2X compound solution was then added to plastic 96-well
plates. Compound dilutions were performed with a constant DMSO
(D2650, Sigma Aldrich) concentration and DMSO concentration per
well was <1% (v/v) for all experiments. 2X compound in media was
temperature andCO2 equilibrated prior to addition. Before compound
addition, half the media from each well of 96-well plate was removed.

Compounds used in this study were obtained from Selleckchem:
Alisertib (S1133), Anisomycin (S7409), Bortezomib (S1013), Bosutinib
(S1014), Cyclophosphamide monohydrate (S2057), Cytochalasin-D
(S8184), Decitabine (S1200), Dexamethasone (S1322), Doxorubicin
(E2516), Fostamatinib (S2625), Gefitinib (S1025), GSK 269962A
(S7687), Paclitaxel (S1150), and Vinblastine Sulfate (S4505).

Compound libraries
All compounds were obtained from commercially available sources. A
subset of 341 FDA approved compounds were selected from the FDA-
approved Drug Library (L1300, Selleckchem), and a subset of 563
compounds were selected from the Targeted Diversity Library (HY-
L099, MedChemExpress). Both libraries cover a range of targets and
bioactivities. Bioactivity information for each compound has been
previously reported in literature.

Proof-of-concept screen and data-analysis
For the compound profiling screen in Fig. 6, A549 cells were seeded at
a density of 15,000 cells/well across 13 semiconductor 96-microplates.
Cellswere allowed to attach andgrow for 24 h. Single replicates of each
compound at a concentration of 10 µM were then added at 24 h using
the half media method as described in the Methods section. Com-
pounds were distributed randomly across plates and not grouped by
MOA. Endplate edge wells (columns 1 and 12) were excluded, and
positive and negative controls were included on the interior of each
plate. 13 plates in total were needed for the screen. The full set of
impedance measurements were taken every 15min.

Five positive controls were included on each plate: Anisomycin
(100nM), Bosutinib (10 µM), Doxorubicin (1 µM), Fostamatinib (1 µM)
and Bortezomib (1 µM). 0.1% (v/v) DMSO was used as a negative
control.

High-dimensional data analysis
All measurement parameters were normalized to a timepoint 1 h
before compound addition to calculate relative changes. The array of
normalized parameters at timepoints logarithmically spaced from
compound addition to +48 h were used for a principal component
analysis (PCA). We found the logarithmic time spacing balanced rapid
binding effects and longer-termeffects increasing/decreasing over the
full 48 h of compound treatment. Unbiased agglomerative clustering
was then performed using the top 20 PCA dimensions. The cluster
assignments produced by the clustering algorithm were used to label
the dataset for the subsequent model described below.

The time-normalized measurement parameters for all wells in
the screen were labeled with cluster assignments generated by the
cluster algorithm. This dataset was then fed into a linear dis-
criminant analysis (LDA) model for supervised classification. Posi-
tive controls and 19 compound clusters separated into clearly
distinguishable clusters. The LDA model was validated by generat-
ing a second dataset with randomized cluster assignments. Per-
forming the LDA model, maintaining the same model parameters,
on the second generated data set produced overlapping indis-
tinguishable clusters (Supplementary Fig. 12). To evaluate the
model’s performance and the robustness of the identified clusters,
we split the cluster-labeled dataset into a training and test sets with
a 80/20 split. After training the model with the training set, pre-
dictions were made on the test set with an accuracy score of 0.68
(Supplementary Fig. 13). Similarly, we also evaluated the robustness
of the positive control responses using training and test sets across
the 13 plates and obtained an accuracy score of 1.

Cell line functional index calculation
We calculated functional indices across 7 different characteristics:
cell flatness, tissue barrier, cell-cell adhesion, attachment, growth
rate, short-term movement and long-term movement. Growth rate
was calculated by taking the slope of the confluence over time
within the first 12 h after cell seeding. The remaining 6 indices took
the steady-state values between 36 and 48 h after cell seeding across
their respective measurements. Each functional index was scaled
from 0 to 1 using the minimum and maximum values measured
across the 16 tested cell types. Thus, a functional index of 0.5 means
that the particular cell type has a median value, and an index of 1
means that it has the highest value of the cell types tested.

Bio-basis calculations for compounds responses
We calculate 11 bio-basis from 5measurements parameters. Eight of
the 10 bio-basis were calculated using the area under the curve of a
given measurement over time between the compound and DMSO
response. All measurement parameters were normalized to a time-
point 1 h before compound addition to calculate relative changes.
The extent of a measurement increase (in the case of attachment,
barrier strength, dynamicity/increased movement and cell flatness)
was calculated by taking the positive area under the curve where the
compound response increased relative to DMSO. On the other
hand, the extent of a measurement decrease (in the case of
detachment, barrier loss, staticity/decreased movement and cell
height) was calculated by taking the negative area under the curve
where the compound response decreased relative to DMSO. Cell
death was calculated by taking the largest decrease in confluence
relative to DMSO. Death rate was calculated by determining the
most negative slope in confluence over time. In addition to the 10
bio-basis, we developed a phenoactivity score, which measures the
cumulative magnitude of the compound effect across all measure-
ment parameters by a modified residual sum of squares between a
compound and the DMSO response. Compounds with a high phe-
noactivity have a large response magnitude compared to DMSO
across multiple parameters, while those with a low phenoactivity
implies a more subtle effect.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its supplementary files. Any additional requests for infor-
mation can be directed to, and will be fulfilled by, the corresponding
authors. Source data are provided with this paper.
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Code availability
CustomcodedevelopedbyCytoTronics Inc. wasused to interfacewith
the electronic plate, run the measurements, and collect the data. A
custom data pipeline developed by CytoTronics Inc. was used to
output individual and aggregate pixel values from the raw electronic
data. All custom code is proprietary to commercial products and is not
publicly available.
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