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We propose a mechanism for tumor growth emphasizing the role of homeostatic
regulation and tissue stability. We show that competition between surface and
bulk effects leads to the existence of a critical size that must be overcome by
metastases to reach macroscopic sizes. This property can qualitatively explain
the observed size distributions of metastases, while size-independent growth
rates cannot account for clinical and experimental data. In addition, it potentially
explains the observed preferential growth of metastases on tissue surfaces and
membranes such as the pleural and peritoneal layers, suggests a mechanism
underlying the seed and soil hypothesis introduced by Stephen Paget in 1889,
and yields realistic values for metastatic inefficiency. We propose a number of
key experiments to test these concepts. The homeostatic pressure as introduced
in this work could constitute a quantitative, experimentally accessible measure
for the metastatic potential of early malignant growths. [DOI: 10.2976/1.3086732]
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The progression of cancer is a multi-step
process. Over 80% of malignant tumors are
carcinomas that originate in epithelial tissues
from where they invade through the basal
membrane into the connective tissue. At some
point, subpopulations of cells may detach from
the primary tumor and spread via the blood-
stream and the lymphatic system. Some of
them give rise to metastases in distant organs.
Metastases account for the majority of pa-
tients’ deaths due to cancer, and thus under-
standing the metastatic process is of critical
importance. The metastatic cascade is a very
inefficient process, as only one in about a thou-
sand cells that leave the primary tumor goes on
to form a macroscopic secondary tumor. This
property is referred to as “metastatic ineffi-
ciency” (Chambers et al., 2002; Sahai, 2007).
Recent experimental results have shown,
however, that cell extravasation is highly effi-
cient, namely that over 80% of the metastatic
cells that are present in the bloodstream man-
age to enter a distant organ (Luzzi et al., 1998;
Cameron et al., 2000; Zijlstra et al., 2002).

Thus, the main contribution to metastatic inef-
ficiency arises from the failure of cancerous
cells to grow inside invaded organs. Metastatic
tumors also show preferential growth in differ-
ent organs with a distribution that cannot be ex-
plained by blood flow patterns alone. Hence,
the efficiency of the metastatic process de-
pends on specific interactions between the in-
vading cancer cells and the local organ tissues
(Fidler et al., 2003). This concept, referred to
as the “seed and soil hypothesis,” was intro-
duced by Stephen Paget as early as 1889
(Weinberg, 2007): “the seed”—the metastatic
cell—needs to be compatible with “the soil”—
the host tissue—for successful growth to occur
(Fidler, 2003; Couzin, 2003). Despite this early
observation, the nature of the interactions con-
trolling both the efficiency of the metastatic
process and its tissue specificity remains a
poorly understood aspect of cancer progression
even today.

In this work, we introduce the notion of ho-
meostatic pressure and propose that it is an im-
portant property for describing the competition
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between different tissues grown in a finite volume. The con-
cept of homeostatic pressure is best defined from the follow-
ing experiment: consider a chamber in which cells can be
cultured with a setup that enables successful proliferation,
allowing in particular for water, oxygen, nutrients, and
growth factors to diffuse through the compartment walls,
keeping the cells’ biochemical environment constant. The
compartment is closed on one side by a piston connected to a
rigid wall with a spring [Fig. 1(A)]. As the growing tissue
fills the available space and gradually compresses the spring,
the pressure rises until a steady state is reached in which
division balances apoptosis and the piston stops moving.
The spring position is stable, since further growth increases
the pressure above this value and favors apoptosis, whereas
recession of the piston decreases the pressure and favors di-
vision. This steady state is characterized by a well-defined
pressure exerted on the spring and a well-defined density of
cells, which we refer to as the homeostatic pressure and
density of the tissue in this particular biochemical environ-
ment. Note that the homeostatic pressure is different from
the hydrostatic pressure since the lateral walls of the cham-
ber allow for fluid transport. Instead, it resembles more an
osmotic pressure but originates from the forces driving tissue
expansion.

We now show that the ability of one tissue to replace an-
other one in a competition for space depends on the relative
values of their homeostatic pressures. Let us consider a si-
milar chamber, but in which the piston separates two tissue
compartments H and T, establishing mechanical contact
[see Fig. 1(B)]. Suppose that tissue H has a homeostatic pres-
sure pH,h smaller than that of tissue T, pT,h. As cells divide,
the pressure rises and first reaches the homeostatic pressure
pH,h. At this point, tissue H stops growing while tissue T
continues to proliferate and drives the pressure above pH,h.
As a result, the apoptosis rate of H becomes larger than its
division rate, resulting in its recession. The process continues
until tissue H completely disappears. The winning compart-
ment always corresponds to the tissue with the larger homeo-
static pressure.

It is interesting to consider the effect of biochemical sig-
naling or immunological interactions between the two tis-
sues. In particular, consider the case where H resists the ex-
pansion of T by locally decreasing the homeostatic pressure
of T. If this decrease is large enough, tissue T shrinks and the
result of the competition will be reversed as compared to the
case without signaling. However, if we consider a sufficiently
large compartment T, the region close to H has a negligible
contribution to the overall compartment growth, and T ex-
pands as in the absence of signaling. There is a particular size
of compartment T for which, at the homeostatic pressure
pH,h, its average growth vanishes: the excess division away
from the piston exactly balances the excess death close to it.
A steady state is possible for this particular size of compart-
ment T, but it is unstable. This introduces the second impor-
tant concept of this paper: the existence of a critical size be-
yond which a tumor tends to grow and below which it tends
to shrink.

A critical size can also exist due to interfacial tension in
higher-dimensional geometries, such as the two-dimensional
organization of a monolayered epithelium or the three-
dimensional configuration of a secondary tumor within the
bulk of a host tissue. The concept of tissue interfacial tension
has already been used to explain cell sorting of tissues with
different adhesive properties (Duguay et al., 2003), and
quantified for several tissues (Foty, 1996). Tissue interfacial
tension can also originate from the mechanical contraction of
cytoskeletal elements at the interface (Lecuit and Lenne,
2007; Schötz et al., 2008). In a spheroid of tissue T located
within the bulk of tissue H, the excess pressure in T is given
by Laplace’s law: �p=2� /r, where � is the interfacial ten-
sion between H and T and r is the radius of the spheroid. As a
result, for small enough radii, the pressure in T is larger than
pT,h, and T recedes. For large radii, however, the excess pres-
sure as given by Laplace’s law vanishes and we recover the
previous one-dimensional case where T grows. There is
again an unstable critical radius rc for which a steady state
exists.

Figure 1. „A… Schematic representation of a measurement ap-
paratus for the homeostatic pressure. As the tissue proliferates,
the piston compresses the spring and the pressure exerted on the
tissue increases. Once a steady state is reached, cell division and
apoptosis balance. The cell density and the pressure exerted on the
spring at this point define the homeostatic mechanical state of the
tissue in a given biochemical environment. �B� Schematic represen-
tation of a tissue-competition experiment. The two tissues are in
mechanical contact through a freely moving, impermeable piston.
The tissue with the lower homeostatic pressure is compressed to a
cell density above its homeostatic point and initiates apoptosis. The
other tissue proliferates and expands until the opposing tissue has
disappeared.

HFSP Journal

266 Homeostatic competition drives tumor growth . . . | Basan et al.



So far, we have considered cell growth and death pro-
cesses as entirely deterministic, in which case only tumors
larger than the critical size can grow. However, single cells
give rise to tumors and metastases (Talmadge and Fidler,
1982; Talmadge and Zbar, 1987; Chambers and Wilson,
1988). This is possible because cell growth and death are sto-
chastic processes. In this paper, we calculate the probability
for a single cell to give rise to a macroscopic tumor and ob-
tain results that are compatible with experimental data on
metastatic inefficiency (Luzzi et al., 1998; Cameron et al.,
2000; Zijlstra et al., 2002). The concepts we use here are
similar to those used to describe the statistics of nucleation
processes as they occur in first-order phase transitions. It is
well known that nucleation is easier on surfaces or foreign
bodies than in the bulk of a system. The same holds true for
tumor growth: we show that it is more likely for tumors to
reach the critical size at an interface than in the bulk of a
tissue, in agreement with experimental and clinical observa-
tions (Cameron et al., 2000; Weiss, 1985). Hence, in this pa-
per, we argue that an unstable critical size for tumor growth
exists, which is responsible for the inefficiency of the meta-
static cascade and could account for the preferred growth of
metastases on surfaces and interfaces. We treat only the early
stages of tumor and metastatic growth, where the heteroge-
neity of tumors—due to effects such as the diffusion of nu-
trients and growth factors or genetic mutations—can be ne-
glected. These effects play an important role for larger tumor
sizes only (Hanahan and Weinberg, 2000).

RESULTS

Tissue rheology and homeostasis
While the notion of homeostatic pressure and density is
model independent, the details of the tissue dynamics are
not. Here, we employ a continuous description that we expect
to be valid for systems large compared to the cell size and
time scales large compared to the characteristic times of in-
dividual cellular processes. The local density of cells � obeys
the continuity equation:

�

�t
� + � · ��v� = �kd − ka�� , �1�

where v denotes the local velocity of the tissue and � · ��v�
the divergence of the cell flux. The right hand side corre-
sponds to source and sink terms that describe the local pro-
duction and destruction of cells due to cell division �kd� and
apoptosis �ka�. In addition, tissues must also satisfy momen-
tum conservation, which, for systems where inertia plays a
negligible role, reduces to force-balance:

����� = 0. �2�

Here, �� denotes the partial derivative with respect to the co-
ordinate � ��=x ,y ,z�, and summation over repeated indices
is implicit; ��� denotes the total stress tensor that we split
into a velocity-independent part and a dynamic part ���� .

For an isotropic tissue, the velocity-independent part reads
−p���, where p is the tissue pressure discussed above. The
dynamic part, however, encodes the rheological properties of
the tissue in a constitutive equation that relates it to the
velocity-gradient tensor ��v�. Tissues are complex media
with a rheological behavior intermediate between those of
liquids and solids (Foty et al., 1994; Schötz et al., 2008).
On time scales short compared to their viscoelastic relax-
ation time, tissues have a finite shear modulus E of the order
of 102–104 Pa (Forgacs et al., 1998; Engler et al., 2004;
Kong et al., 2005). For time scales exceeding the largest re-
laxation time �, however, viscoelastic media behave as vis-
cous liquids with viscosity 	=E�. Measurements of the me-
chanical response of various cell aggregates suggest a value
of the relaxation time in the range of tens of seconds to sev-
eral minutes (Forgacs et al., 1998; Schötz et al., 2008), cor-
responding to a viscosity in the range of 103–105 Pa s. The
fastest division rates of mammalian cells are typically of the
order of one division per day (Weinberg, 2007). Hence,
tissue-growth dynamics takes place on time scales that are
long compared to the characteristic times of cellular pro-
cesses, including adhesion and detachment of the proteins
that insure the integrity of the tissue under consideration.
Under such conditions, it is a general result that the effective
rheology on large scales appears to be that of a fluid (Frisch
et al., 1986). We therefore argue that, in the context of tissue-
growth dynamics, a purely viscous rheology is appropriate,
which leads to the standard constitutive equation:

���� = 	���v� + ��v�� . �3�

Under fixed biochemical and biophysical conditions, di-
vision and apoptosis rates—as well as pressure—are func-
tions of cell density only. In the absence of a detailed knowl-
edge of the pressure and rate dependences as functions of �,
and for the sake of simplicity, we rely on an expansion to first
order in �−�h around the homeostatic density �h:

p = 
−1�� − �h� + ph,

kd − ka = − ��� − �h� . �4�

The parameter 
 is equivalent to the standard compressibility
of a material and describes the variation of cell density with
pressure. Similarly, the coefficient � quantifies how the dif-
ference between division and apoptosis rates depends on
density. Both 
 and � are experimentally accessible param-
eters that must both be positive to insure stability. In Eqs. (4),
the expansion of the pressure p in terms of the cell density �
is complementary to the expansion of kd−ka known as logis-
tic growth, which is a common way to model growth dynam-
ics (Sachs et al., 2001). As we have stated, the most general
dependence of the pressure p as well as of the division and
apoptosis function kd−ka on the biochemical environment of
the tissue is encoded in the expansion coefficients 
 and �
here, which are therefore constants only under fixed bio-
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chemical conditions. As we focus on tumors of small sizes
under steady environmental conditions, such a dependence
will not be discussed here. But our framework in principle
allows us to study more complex situations where spatio-
temporal inhomogeneities would play a role, simply by al-
lowing 
 and � to vary. Cell division and apoptosis could
also be coupled directly to pressure, leading to tissue compe-
tition as proposed in a similar model by Shraiman (2005).
Also, studies have shown that a defective density sensing can
lead to a growth advantage of cancerous cells (Chaplain et
al., 2006). In this paper, we argue that competition for vol-
ume is a generic property of tissues in mechanical contact,
since the pressure and effective growth rate functions take
the form of Eqs. (4) close to the steady state density of the
tissue.

Tumor growth dynamics
We are now in a position to show that homeostatic regulation
intrinsically contains a growth mechanism for neoplastic tis-
sues. Consider the growth of a spherical tissue T located at
the center of a spherical compartment of finite volume, filled
with another tissue H of lower homeostatic pressure. The
spherical tissue can be either a primary tumor developing
within the tissue it stems from, or a metastasis that has mi-
grated from its original location and invaded a foreign organ.
The two tissues are in mechanical contact, so that the total
stress is continuous at the interface. Equations (1)–(4) must
be solved for both compartments, taking the location of the
interface of the two tissues into account. A numerical solu-
tion of the associated generic growth dynamics is presented
in Fig. 2. The solution shows that the tissue with higher ho-
meostatic pressure grows at the expense of the other one and
takes over the entire compartment. In vivo, however, the con-
dition of a fixed finite volume does not hold in general. In
real tissues, there is often first a displacement of the nontu-
mor tissue before anatomical constraints limit the total vol-

ume available to the system. However, the devastating effect
of malignant tumors stems from the fact that they invade and
replace the functional tissues. The architecture of most tis-
sues leads to a competition for volume in the case of neoplas-
tic proliferation. Note also that, considering the time evolu-
tion of the boundary between the two tissues only, we get a
curve that is reminiscent of the well-known, experimentally
observed Gompertzian growth curves (Molski and Konarski,
2003). A quantitative illustration of this behavior obtained
within our framework is illustrated in the Supplementary
Material, making use of realistic parameters.

We now examine several effects that can significantly al-
ter the tumor growth dynamics as presented above. A first
example, which is motivated by the structure of benign tu-
mors, corresponds to tissue T engulfed in a membrane, typi-
cally a thin shell of extracellular matrix, where the surface
tension � rises as T expands. If this tension increases faster
than the radius of T, the additional pressure increases and the
expansion of T eventually stops: a stable steady state exists at
r=rs such that pT,h−pH,h=2��rs� /rs, where pT,h and pH,h are
the respective homeostatic pressures of T and H. A numerical
solution illustrating this case is presented in Fig. 3. This dor-
mant state is stable until genetic alterations inducing the pro-
duction of proteases by the tumor cells lead to the degrada-
tion of the membrane.

As a second example, we consider the case of a tumor
that is limited in its growth, for example by nutrient or oxy-
gen supply. It is indeed a well-known fact that tumors are
poorly vascularized before they acquire the capability to
trigger the growth of new blood vessels via angiogenesis
(Folkman and D’Amore, 1996; Weidner et al., 1991;
Hanahan and Weinberg, 2000). This limitation has profound
consequences for their growth dynamics (Preziosi, 2003),
often leading to the existence of a maximum size of about
1–2 mm, where they remain in a “dormant state” until the
induction of angiogenesis (Folkman and D’Amore, 1996;

Figure 2. Numerical solution for the cell density „A… and cell velocity „B… as functions of space and time during the growth of one
tissue located in the bulk of another tissue of lower homeostatic pressure. Color coding for local cell density and velocity is given on the
right hand side of panels �A� and �B�, respectively. Spherical symmetry is assumed. Total integration time, compartment size, and homeostatic
densities of tissues T and H are scaled to one. In both plots, the boundary between the two tissues is indicated by a black line. Parameters
are chosen in order to illustrate the interplay between viscous dynamics and compartment growth �see Supplementary Material�.
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Weinberg, 2007). In Fig. 4, we present a numerical integra-
tion of the growth dynamics of a nutrient-limited tumor in
the bulk of a healthy, well vascularized tissue. While we as-
sume a homogeneous and high enough concentration of nu-
trients for the healthy tissue, the neoplastic tissue is only sup-
plied with nutrients via diffusion through its surface. Since
nutrient diffusion is fast compared to growth dynamics, we
calculate the nutrient concentration profile by solving a
steady-state diffusion equation, taking into account nutrient
consumption due to cell metabolism and division (see
Supplementary Material). We choose functional depen-
dences of the division and apoptosis rates on the nutrient
concentration and cell density that correspond to a biological
behavior: under very low concentrations of nutrients or oxy-
gen, cells tend to die, but a limited supply of nutrients can
also decrease cell division by triggering cell differentiation,

inducing a quiescent cell state or favoring adaptation of the
metabolism of the cells to the new environment. In agree-
ment with what is known about the internal structure of dor-
mant tumors, cells divide at the boundary where they get
enough nutrients, and die at the center. This creates a steady
state flow of cells from the surface toward the center of the
tumor and thereby a constant cell turnover that is favorable to
mutations.

Note that the typical length-scale at which the diffusion
of nutrients becomes a limiting factor is of the order of mil-
limeters, the size of a dormant tumor (Folkman and
D’Amore, 1996; Weinberg, 2007). This scale is very large
compared to the size we estimate for the critical radius intro-
duced above. In the following, when considering the nucle-
ation process of micro-tumors, we therefore assume a homo-
geneous, high enough concentration of nutrients.

Figure 3. Numerical solution for the cell density „A… and cell velocity „B… as functions of space and time during the growth of a
tissue engulfed in an elastic membrane and located in the bulk of another tissue of lower homeostatic pressure. As in Fig. 2,
spherical symmetry is assumed; total integration time, compartment size, and homeostatic densities are scaled to one, and in both plots the
boundary between the two tissues is indicated by a black line. Color coding is similar to the one used in Fig. 2. In this solution, the membrane
is treated as purely elastic and is put under tension above a given radius x0=0.5. The explicit surface tension dependence on the boundary
location x is given in the Supplementary Material. Additional parameters are given in the Supplementary Material. �A� The expansion of the
inner compartment is similar to that of Fig. 2 until, at x=0.5, surface tension begins to play a role. The membrane expands until its tension
balances the pressure difference between the two compartments and a stable steady state is reached. �B� Corresponding cell-velocity plot.

Figure 4. Numerical solution of the growth dynamics with the geometrical arrangement of Fig. 2 when growth rates are nutrient
limited. Nutrients diffuse into the inner compartment through the tissue interface �see Supplementary Material�. �A� The inner compartment
starts growing as in the case of Fig. 2 but asymptotically reaches a maximum size. �B� Cells proliferate at the surface of the inner compart-
ment, which is rich in nutrients, and die at the center where nutrients are scarce, resulting in an inward flow of cells. Color coding is similar
to the one used in Figs. 2 and 3, but it now allows for negative values required by the inward flow.
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Critical size and stochastic growth dynamics
A third effect that can modify tumor growth dynamics is the
presence of a constant tissue interfacial tension as introduced
above. When H and T are at their homeostatic densities, there
exists a particular radius rc at which mechanical equilibrium
is reached, but this equilibrium, given by pT,h−pH,h=2� /rc,
is unstable. Numerical solutions illustrating the growth dy-
namics around this critical radius are presented in Fig. 5.

Given the existence of such an unstable critical radius,
the question arises as to how a metastasis—or a primary
tumor—can grow within a healthy tissue since in general
it originates from a single cell (Talmadge and Fidler, 1982;
Talmadge and Zbar, 1987; Chambers and Wilson, 1988). The
answer stems from stochasticity, an aspect of the dynamics
that has been ignored in the description so far. The impor-
tance of stochasticity in growth processes has already been
recognized in various situations (Nowak et al., 2003). Under
the assumption that stochastic tumor growth is a Poisson pro-
cess, the evolution of the probability P�n , t� for a spherical
tumor T inside a healthy tissue H to contain n cells at time t
can be described by a master equation:

dP�n,t�
dt

= rn−1
+ P�n − 1,t� − �rn

+ + rn
−�P�n,t�

+ rn+1
− P�n + 1,t� , �5�

where rn
+=nkd and rn

−=nka are the rates at which a tumor
grows or shrinks from n to �n+1� or �n−1� cells, respec-
tively. The rates kd and ka depend on n, and we model their
dependence in the following way: For tumors small com-
pared to the size of the healthy compartment, the healthy tis-
sue is only slightly perturbed away from its homeostatic
state. Thus, the pressure inside the tumor is given by
Laplace’s law: pT=pH,h+2� /r. Therefore, the division and

apoptosis rates of a spherical tumor of radius r are given by

kd/a = − �d/a
T�pH,h +
2�

r
− pT,h� + k0. �6�

Here, �d, �a, and k0 are three phenomenological coefficients
that enter the linear expansions of kd and ka, similarly to � in
Eq. (4). To ensure the proper behavior as a function of the
cell density �, �d needs to be positive and �a negative. Both
equations for kd and ka share the same constant k0 such that
Eq. (4) is satisfied with �=�d−�a. In the master equation (5),
the rates rn

+ and rn
− are then given to leading order by

rn
+/− = n�− �d/a
T�pH,h + 2��4��T,h

3n
�1/3

− pT,h� + k0� ,

�7�

and k00 fixes the amount of cell turnover—and thereby the
amount of stochasticity—in the system.

For an analytic treatment, we map this growth process
onto a random walk with sinks at n=0 and n=nmax, which
results in a linear birth-death process where all tumors either
disappear or reach macroscopic sizes when time goes to in-
finity. The so-called “splitting probability” �g—namely the
probability for a single cell to reach the size n=nmax and not
disappear in the lower sink n=0—is given by (Van Kampen,
2007)

�g =
1

1 + �
µ=1

nmax−1
rµ

−rµ−1
−

¯ r1
−

rµ
+rµ−1

+
¯ r1

+

. �8�

In Fig. 6, we present this analytic result together with the re-
sults of a Monte Carlo simulation of Eqs. (5)–(7) based on a
Gillespie algorithm (Gillespie, 1977).

Finally, it is interesting to consider the growth of neoplas-
tic semi-spheroids on tissue boundaries. The internal pres-
sure of a semi-spheroid is again given by Laplace’s law, but
for the same radius, the number of cells within the tumor is
half that of a complete spheroid. Therefore, the critical num-
ber of cells of a tumor at an interface is only half that of a
tumor in the bulk. We can directly read the resulting effect on
the growth probability out of Fig. 6. For example, between
the critical sizes of five and ten cells, we obtain a growth
probability ratio of 8.6. This characterizes a significant pref-
erence for tumors to grow on surfaces, an effect that has been
observed experimentally (Cameron et al., 2000) and clini-
cally (Weiss, 1985). Note that other mechanisms—such as
the adhesion of cancerous cells to the extracellular matrix,
which leads to a different initial distribution of metastatic
cells—might also play a role.

DISCUSSION
In this work, we have shown that homeostatic regulation of
cell density and pressure leads to a competition for space be-
tween tissues in mechanical contact. We have proposed that

Figure 5. Tissue boundary as a function of time during the
growth of a tissue located in the bulk of another tissue of lower
homeostatic pressure, with interfacial tension and in spherical
geometry. Parameters are given in the Supplementary Material, to-
gether with rc=0.5 and �=1. The different curves show the dynam-
ics for the following initial values r0 of r: 0.49, 0.499, 0.4999, 0.501,
and 0.51. Both tissues start out at their homeostatic densities.
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an increased homeostatic pressure is a characteristic trait of
tumors. Gedanken experiments for measuring the homeo-
static pressure and growth rates have been discussed and
could be realized using current experimental techniques. For
example, Helminger et al. have shown that tumors growing
in agarose gels proliferate until the pressure exerted by the
gel reaches 45–120 mmHg (Helminger et al., 1997). This
gives an estimate of the homeostatic pressure defined in
this paper. Such numbers are compatible with the pressure
typically generated by actin polymerization (Footer et al.,
2007; Marcy et al., 2004). An experiment of particular inter-
est that has not been performed so far is the competition be-
tween a healthy and a tumorlike tissue separated by a piston,
which could prove that mechanical effects are important for
tumor growth. If the growth mechanism discussed in this pa-
per is relevant to tumor growth, it would be interesting to
measure the homeostatic pressures characterizing healthy
and neoplastic tissues, together with their dependences on
their biochemical environments. Of particular interest would
be their dependence on oxygen, nutrients, growth factors,
and drugs.

The second concept introduced in this paper is the exis-
tence of a critical size for tumor growth due to biochemical,
immunological, or mechanical surface effects that can out-
balance the bulk growth advantage of the neoplastic tissue
for small tumor sizes. We show that this interaction can be
responsible for the inefficiency of the metastatic cascade af-

ter extravasation. The growth of very few metastases to mac-
roscopic sizes cannot be explained by size-independent
growth rates, which yield a probability distribution of meta-
static cell clusters that decays exponentially with cluster size.
Instead, the existence of a critical size yields realistic values
for metastatic inefficiency and a distribution of tumor sizes
compatible with experimental observations (Luzzi et al.,
1998; Cameron et al., 2000; Zijlstra et al., 2002) (see Fig. 6).
Figure 6 also shows the dependence of metastatic ineffi-
ciency on the critical size: a small change in tissue-tumor
interaction such as an increased interfacial tension can dra-
matically lower the probability for macroscopic growth. As
an illustration of this effect, consider a metastatic tissue with
a critical cell number of 5 in a given environment. Let us
compare this situation with that of the same tissue placed in
another environment where its interfacial tension is now
twice as large, a situation that is well within natural varia-
tions (Foty, 1996). While for the first environment, about 3 in
100 metastatic cells form a macroscopic tumor, in the second
environment, with a critical cell number of 40, less than 2 in
10 million manage to do so. This corresponds to a difference
in metastatic efficiency of five orders of magnitude. We pro-
pose that this effect could account for the strong tissue speci-
ficity of metastatic growth that underlies the “seed and soil
hypothesis” (Weinberg, 2007).

The concept of homeostatic pressure presented here is
not an alternative to the cellular and genetic mechanisms in-
volved in tumor growth, but rather a different level of de-
scription. Indeed, we propose that some of the fundamental
biological deregulations that are characteristic of neoplastic
cells lead to an increased homeostatic pressure. The frame-
work presented here can be used to explicitly take into ac-
count such well-known properties. It can also be generalized
to incorporate more general features of biological tissue be-
havior. For example, on long time scales, genetic instability
as well as senescence render tissue properties time depen-
dent. This could be incorporated into our framework using
techniques similar to those of Hallatschek et al. (Hallatschek
et al., 2007; Hallatschek and Nelson, 2008), as well as those
of multiscale models of tumor growth (Ribba et al., 2006;
Macklin and Lowengrub, 2007; Wise et al., 2008).
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