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Abstract
In this work, we model biological tissues using a simple, mechanistic simulation based on
dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue
and determine its dependence on the properties of the individual cell. Cells in our simulation
adhere to each other, expand in volume, divide after reaching a specific size checkpoint and
undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the
tissue. We measure the dependence of the homeostatic state on the microscopic parameters of
our model and show that homeostatic pressure, rather than the unconfined rate of cell division,
determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and
round up due to the effect of tissue surface tension, which we measure for different tissues.
Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a
variety of shear and creep simulations, we study tissue rheology by measuring yield stresses,
shear viscosities, complex viscosities as well as the loss tangents as a function of model
parameters. We find that cell division and apoptosis lead to a vanishing yield stress and
fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology
of the tissue are also measured. In addition, we find that the level of cell division and apoptosis
drives the diffusion of cells in the tissue. Finally, we present a method for measuring the
compressibility of the tissue and its response to external stress via cell division and apoptosis.

S Online supplementary data available from stacks.iop.org/PhysBio/8/026014/mmedia

1. Introduction

The development of tissues is an essential property that
distinguishes complex multicellular species from cultures
of unicellular organisms. In vertebrate tissue, single cells
sacrifice the optimization of their individual growth rate for the
well-being of the entire organism, by performing specialized
beneficial functions.

Understanding the collective behavior of eukaryotic cells
constituting a tissue is therefore of central importance for
a variety of biological fields from embryogenesis to tumor
progression. In studies of tissues, emphasis has often been
put on signalling pathways. However, it has recently become

clear that mechanical effects play an important role in the
growth and development of biological tissues. At the single
cell level, mechanical stresses couple to the orientation of
the mitotic spindle during cell division [1]. Pressure has also
been shown to strongly influence the expression of some genes
for example during drosophila development or in tumors [2].
Finally, there is now a large body of evidence suggesting that
cell differentiation depends on the mechanical properties of
the substrate, in particular the value of its elastic modulus [3].

A macroscopic description of the mechanical or
rheological properties of tissues requires a constitutive
equation which relates the local stress in the tissue to the
strain or the strain rate. An intuitive approach is to consider

1478-3975/11/026014+13$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1478-3975/8/2/026014
mailto:basan.markus@gmail.com
mailto:jens@elgeti.de
http://stacks.iop.org/PhysBio/8/026014
http://stacks.iop.org/PhysBio/8/026014/mmedia


Phys. Biol. 8 (2011) 026014 M Basan et al

a tissue as an elastic solid, for which the stress only depends
on the local strain at a given time, in general in a nonlinear
way. The nonlinear elastic description of tissues has been
very successful, for example, in explaining growth instabilities
of plant tissues. In a completely opposite limit, following
the seminal works of Steinberg and coworkers [4–6], it has
been argued that during early development, many tissues
should be considered as liquids with a finite viscosity and
an isotropic surface tension. Between these two regimes, any
intermediate complex fluid behavior is of course possible and
in certain situations, tissues have been described as visco-
elastic or plastic materials. The precise mechanical description
of tissues is still a matter of debate and it is therefore interesting
to further investigate the rheological response of tissues to
external forces [7, 8].

In an earlier work [9], we followed this line of thought
and argued that tissues can effectively be treated as viscous
fluids on the timescales of growth. We used these ideas to
suggest that mechanical competition due to the homeostatic
growth pressure is an important part of tumor growth. The
homeostatic state is defined as the steady state reached by
a tissue when it is allowed to grow in a finite volume with
no restriction on nutrients and growth factors. Using a
continuum hydrodynamic description of tissues, we studied
several biological questions including the origin of metastatic
inefficiency [9] and fingering instabilities frequently observed
at the stromal–epithelial interface [10]. More recently, we
investigated the effect of cell division and apoptosis on tissue
rheology [11]. While several studies show that many tissues
such as embryonic epithelial tissues behave as viscous fluids
[4–6], we argue that tissues, which are completely elastic at
short times, undergo fluidization due to coupling between
stress and the cell division-apoptosis rate, which relaxes
residual stress and leads to a visco-elastic behavior with a
relaxation time of the order of the inverse rate of cell turnover.

In this paper, we use a particle-based tissue simulation
technique based on a few intuitive assumptions about single-
cell behavior to study the macroscopic properties of tissues
such as their rheology. Our simulation leads to a well-defined
homeostatic state and naturally gives rise to pressure-based
tissue competition. We also discuss the role of cell division
and apoptosis on tissue fluidization as introduced in our earlier
work [11] and present additional data on this effect.

Particle-based simulations have been extensively used to
study complex fluids such as colloidal suspensions or polymer
melts. They have also already been implemented to study
the dynamics of biological tissues taking into account cell
division, apoptosis, and active forces. In most of the particle-
based tissue simulations, Langevin dynamics models were
employed, for example, we refer to the numerous works by
the group of Drasdo [12–21].

Early particle-based tissue simulations were conceived
for understanding simple in vitro experiments with two-
dimensional cell populations spreading on a substrate. The
growth curves in these experiments were extensively studied
by Bru et al [22, 23]. In these simulations, the cells take
the form of dumbbells during cell division and the orientation
of the division axis is in the direction of the maximum force

exerted on the cell. The adhesive interactions between cells are
described by a pair potential based on the Johnson–Kendall–
Roberts (JKR) approximation, which gives the interaction
force between two adhesive spheres. The Langevin equations
of motion are obtained by balancing the friction forces
arising from the interaction with the substrate with external
compression forces, adhesion forces and random forces due to
cellular movement.

The growth of three-dimensional cell aggregates has also
been investigated extensively using particle-based models
[15, 16, 24]. Experimental results on the growth of tumor
spheroids limited in size by nutrients such as oxygen and
glucose have largely been reproduced in these simulations
[25, 26]. In a somewhat different approach, more biological
details of individual cells have been incorporated by modeling
a cell as a multi-particle structure [27, 28]. For example,
Sandersius and Newman investigate tissue rheology with a
variety of computer experiments.

In the following, we use a similar idea and describe
each cell as two repelling particles. We first introduce our
simulation model in section 2. Then, we discuss growth
and homeostatic state in section 3. Tissue surface tensions
and cell sorting are discussed in section 4. The last two
sections are devoted to the diffusion of cells inside the tissue
(section 5) and the rheological properties of the simulated
tissues (section 6). The paper ends with a summary and a
discussion of our main results.

2. Tissue simulations

In this work, we use a minimalist approach to model cells and
tissue growth. By this, we mean that we use a simple model
that fulfills a certain set of requirements for the tissue. In
particular, our simulated cells should

• readily adhere to each other,
• maintain volume exclusion,
• exert an active growth pressure on their surrounding,
• expand in size until reaching a size checkpoint,
• divide when reaching this size checkpoint,
• undergo apoptosis,
• exert random forces on neighboring cells,
• regulate to their homeostatic state via cell division and

apoptosis in a confined volume,
• give rise to tissue surface tension,
• comply with force balance and momentum conservation.

The model that we present here—though simple and
purely mechanical—fulfills all of the above requirements.

2.1. Individual cells

Based on experimental evidence [29], we assume that a given
cell type has a particular size checkpoint, which it must
overcome in order to enter mitosis. To describe cell growth,
we use a model in which each cell consists of two particles
i and j interacting via a repulsive growth force �FG

ij . The
distance between the two particles, constituting the same cell,
represents the cell’s size. When the distance between the cell
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particles exceeds a size threshold Rc, the cell divides. To create
the new cell, particles must be inserted. After the division,
each of the original particles belongs to a different cell. The
new particles are then placed randomly within a short distance
rc from the particles of the original cell. In some simulations,
we impose vanishing cell division by setting �FG

ij = 0 and Rc

large. While cell division is implemented in this deterministic
manner, apoptosis (and other forms of cell death) is included
by removing cells randomly at a constant rate ka. For the
interaction between cells (adhesion and volume exclusion),
forces are defined between the cell particles i and j that do
not belong to the same cell. These interact via a short range
repulsive force �FCC

ij and a constant attractive force �Fa
ij if they

are within a certain range of each other.
The total conservative force �Fi acting on particle i is thus

Fi = FG
ic +

∑
j

( �FCC
ij + �Fa

ij

)
(1)

where the sum runs over all particles j except for the particle
belonging to the same cell c.

2.2. Energy dissipation

Energy is dissipated by using a dissipative particle dynamics
(DPD) type thermostat [30] on the particles. DPD is a widely
used simulation technique to study hydrodynamics of complex
fluids. Details about implementing DPD are readily available
in the literature [30]. Here, we just note some features that
are of particular importance for our simulations: the DPD
algorithm introduces viscous dissipation between cells, while
preserving momentum balance. The dissipative force reads

FD
i = −γω(ri,j )((vj − vi)rij ) ˆrij (2)

where �rij = �rj − �ri is the vector between the particles i and j

located at �ri and �rj , respectively. The modulus and direction
of �rij are denoted by rij and r̂ij , respectively. A similar
notation holds for the velocity �vi . ω is a weight function (for
more details, see [30]). Since cells consist of two particles
in our model, the dissipation constants between particles
of different cells γt and between the particles constituting
the same cell γc can be chosen independently. We also
implement a background dissipation γb to model the effect
of an extracellular matrix. Because we are mainly interested
in studying tissues without bulk extracellular matrix such as
epithelia, we typically set this dissipation coefficient to very
low values (about three orders of magnitude smaller than γc

3)
in our simulations.

At the cost of higher numerical complexity, the major
advantage of DPD versus Langevin simulations is that DPD
does not assume the background dissipation to be the dominant
mode of dissipation. Indeed, in epithelial tissues, where the
extracellular matrix is typically absent, dissipative forces are
transferred to neighboring cells and not to the background. In
our simulation, a random force is added in addition, which
mimics motility forces from the cytoskeleton. The noise
amplitude kBTn is associated with an effective temperature and

3 Cell division and apoptosis break momentum balance. In simulations
where momentum cannot be dissipated to the boundaries, a small background
dissipation is thus needed.

for equilibrium systems fulfills the Stokes–Einstein relation.
Regarding weight functions and integrators, we follow method
3.1 of [30].

2.3. Interaction forces

To reduce the number of parameters, we use simple central
forces. The force FG

ij felt by particle i due to particle j

belonging to the same cell and driving the expansion of that
cell is proportional to the growth coefficient B. FG

ij is given by

FG
ij = B

(rji + r0)2
r̂j i . (3)

For adhesion and volume exclusion between cells, equivalent
forces are defined between cell particles. Volume exclusion of
cells is modeled by a repulsive force on particles constituting
different cells of the form

FCC
ij =

{
f0

(
R5

pp

/
r−5
ji − 1

)
r̂j i if rji � Rpp

0 if rji > Rpp.
(4)

Finally, adhesion is implemented via a constant force �Fa
ij =

−f1r̂j i between particles of different cells within a range
rij � Rpp, with f 0 and f 1 the repulsive and attractive cell–cell
potential coefficients, respectively.

We find that tissue behavior on large scales does not
depend on the details of the interaction forces, consistent with
results by Drasdo et al [19]. With these three forces and our
basic division and apoptosis rules, we arrive at a minimalistic
tissue model. Although interactions in real tissues are much
more complex, we argue that some fundamental and universal
properties of tissues are captured with this approach.

2.4. Standard tissue and units

To facilitate the comparison of different simulations, we define
a standard tissue (see table 1) which we use as a starting point to
explore parameter space. Well-defined, measurable properties
of the standard tissue are chosen to rescale data and parameters
for comparison with experiments. All values and numerical
figures presented in this work without further comments are
given in terms of these units. Values can be converted to
SI units using table 2. An asterisk ∗ denotes quantities
normalized by the corresponding value in the standard tissue
(e.g. B∗ = B/Bref).

As a unit of time tref , we use the inverse growth rate
of the unconfined standard tissue. The unit length lref is
defined by the effective cell diameter lref := 2(3/(4πρ)1/3

in the standard tissue at its homeostatic state. The cell
number density ρ for this definition is measured in periodic
boundary conditions with box lengths 5.59. Finally, we use the
homeostatic pressure of the standard tissue grown in a double
plate compartment as the unit stress pref .

3. Growth, competition and homeostatic state

3.1. Tissue growth

When unconfined by compartment walls or lack of nutrients,
the tissue grows exponentially forming a spheroid (see
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Figure 1. Each cell consists of two particles that repel each other with an intracellular expansion pressure given by equation (3). The
intracellular damping coefficient γc fixes the timescale of cell division. When the distance between the two particles exceeds a certain
threshold Rc (a ‘size checkpoint’), the cell divides and two new particles are inserted a small distance rc away from the old ones in random
directions (visualization using VMD [38]). With permission from [11].

Table 1. DPD standard tissue parameters—parameters used for the
standard tissue. The plots in the main text are normalized with
respect to this tissue.

Parameter Value Unit Description

B 2.37 pref (lref)4 Growth coefficient
r0 1.12 lref Cellular expansion

pressure constant II
γc 4.42 × 10−1 pref lref t ref Intracellular

dissipation constant
between particles of
the same cell

γt 2.21 × 10−1 pref lref t ref Intercellular
dissipation constant
between particles of
different cells

γb 4.42 × 10−4 pref lref t ref Background
dissipation
coefficient in
Forceshear
simulations
γb = γt/10

Rt 1.12 lref Range of dissipative
dissipation forces

ka 7.67 × 10−2 (t ref)−1 Rate of cell death
Rc 8.95 × 10−1 lref Distance threshold for

cell division
rc 1.12 × 10−5 lref Distance at which new

particles are placed
when the cell
divides

kBTn 4.24 × 10−3 pref (lref)3 Noise intensity in the
tissue

f 0 9.08 × 10−2 pref (lref)2 Repulsive cell–cell
potential coefficient

f 1 1.90 × 10−1 pref (lref)2 Attractive cell–cell
potential coefficient

Rpp 1.12 lref Range of pair
potentials

m 5.76 × 10−4 pref (t ref)2 lref Cell particle mass
dt 1.3 × 10−4 tref Integration timestep

figure 1). The cell division timescale depends on simulation
parameters, but is dominated by B/γc in realistic parameter
regimes. As the spheroid becomes large, cell growth is
hindered by neighboring cells. In the bulk of the tissue, cells
must deform the surrounding tissue to increase their volume
in order to divide. Terming the total resistance felt by the cell
particles due to their surrounding γη, to a first approximation,

Table 2. Rescaling units—suggestions for the standard tissue scales
in real physical units. This table can be employed to convert
quantities presented to real units.

Parameter Value Description

tref 1 day Inverse unconfined growth
rate of standard tissue

lref 10 μm Particle diameter in
homeostatic standard tissue

pref 1000 Pa Homeostatic pressure of
standard tissue

the division timescale in the bulk is then proportional to
(γc + γη)/B. Thus, the division rate in the bulk is smaller
than at the surface.

At high levels of adhesion, this effect can become so
severe that cell division is unable to balance cell death. In this
case, the bulk tissue is not viable and undergoes net apoptosis.
Cells that are close to the free surface are less constrained by
their neighbors and divide close to their unconstrained rate,
replenishing the tissue. This leads to the existence of a stable
steady state, where average surface cell division balances bulk
apoptosis. The division and apoptosis rates per unit volume
given by ρ · kd and ρ · ka, respectively, are shown as a function
of the radial location r in steady-state tissue aggregates in
figure 2. We see that cell division events are localized at the
surface of the tissue and that almost no cell division occurs
in the bulk. It should be emphasized that this phenomenon
is limited to parameter regimes with strong adhesion, small
growth force and large apoptosis. Whether or not such steady
states are physiologically relevant is an interesting question
that should be addressed in the future. We do not consider this
regime in the remainder of this paper.

3.2. Homeostatic pressure

The homeostatic pressure of the tissue is defined as the
mechanical pressure that a tissue grown in a finite compartment
develops on the compartment walls, when not limited by lack
of nutrients or growth factors, as discussed in an earlier work
[9]. A tissue, not limited by nutrients, grows to fill the available
volume completely. The homeostatic state of the tissue is
defined by a balance of cell division and apoptosis; this is thus
a stable fixed point of tissue growth dynamics [9].
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Figure 2. Cell division (solid lines and symbols) and apoptosis
(dashed line, open symbols) rates per volume as a function of radial
position in an adhesion-limited, steady-state tissue spheroid. The
solid black line segment indicates the bulk per-volume death rate of
the standard tissue. To obtain such a steady-state cluster size, we
employ a reduced intracellular repulsion by setting B∗ = 0.4. All
other parameters are those of the standard tissue given in table 1.
Cell division takes place close to the tissue surface, while almost no
cells are able to divide in the bulk of the tissue. Note that the
apoptosis rate per cell is constant by construction. The drop in the
apoptosis rate per volume at the surface of the spheroid seen in the
plot is due to decreased cell density.

When confined in a finite volume, the model tissue
introduced in this work approaches a well-defined homeostatic
state, characterized by a well-defined pressure, which can be
measured in the simulation. For quantitative measurements
of this pressure, the tissue is grown in a box with two
parallel hard walls and periodic boundary conditions in the
other directions. This parallel plate simulation allows for
a pressure measurement without interference from surface
tension effects, by determining the momentum exchange with
the bounce-back walls.

Figure 3 shows the dependence of the homeostatic
pressure and density on important model parameters. From
figure 3(C), it is apparent that the homeostatic pressure of
the tissue is dominated by the cellular growth coefficient
given by B (equation (3)). Increasing the apoptosis rate ka

(figure 3(A)) reduces the steady-state density in the tissue
and therefore decreases the homeostatic pressure. When the
apoptosis rate is too large, cell growth is unable to replenish
the tissue, the homeostatic state no longer exists and the tissue
dies as shown above (see section 3.1). As demonstrated in the
previous section, the cell–cell adhesion force Fa (figure 3(B))
directly hinders growth, and therefore reduces the homeostatic
pressure. The contribution of the noise intensity to the
homeostatic pressure is small compared to that of the cellular
growth coefficient for B∗ = 1.0 and B∗ = 1.5. However, for
small growth coefficients, such as B∗ = 0.5, for instance, the
random forces in the tissue can be the dominant contribution
to homeostatic pressure. Changes in the intercellular damping
coefficient γt in the range 0.02 < γ ∗

t < 2, plotted in
figure 3(E), do not appear to affect the homeostatic pressure
of the tissue. This is because the intracellular dissipation γc

is the dominant mode of dissipation that limits the speed of
cell division. Indeed, figure 3(F) shows that the intracellular
dissipation γc does have a small effect on the homeostatic
pressure. Increasing the intra-cellular dissipation γc slows
down the rate of cell division, making the tissue less efficient
in filling the space created by the constant rate of apoptosis. In
turn, this lowers the cell density and decreases the homeostatic
pressure.

3.3. Tissue competition

In [9], we predicted that the homeostatic pressure is an
essential concept for understanding tissue competition in a
finite compartment. Confirming our earlier hypotheses, we
show that for two tissues grown in competition for the same
volume, the tissue with the higher homeostatic pressure takes
over the compartment. To initialize a tissue competition
simulation, in a compartment filled with a tissue at its
homeostatic state, a single cell is mutated to a second tissue
type of higher homeostatic pressure. In general, the new tissue
takes over the compartment completely. Note that it is the
homeostatic pressure and not for example the division rate that
determines the outcome of this process. Indeed, a tissue with
lower division rate, but a higher homeostatic pressure, wins the
competition (see figure 4). This is a conceptually important
point: contrary to what is commonly accepted, the cell division
and apoptosis rates in the absence of stress are not sufficient
to predict the result of tissue competition experiments. Our
simulations clearly show that the determining parameter is
indeed the homeostatic pressure. Note that in this section we
choose the physical properties of the two tissues such that
the interfacial tension (as discussed below) is small enough to
have only a negligible effect.

4. Surface tension and cell sorting

As shown in many experimental works, the presence of
surface and interfacial tensions is a generic property of
biological tissues. Steinberg and others have shown that
tissues behave like viscous liquids with interfacial tensions
[4–6]. In particular, droplets of tissues do not only round off
to approach a spherical shape, but mixtures of tissue types with
different adhesive properties unmix and the less adhesive tissue
spreads over the surface of the more adhesive one. Cell–cell
adhesion is closely related to the surface tensions measured in
experiments such as the double plate compression of a tissue
droplet. A direct correspondence between adhesive properties
and tissue surface tension has been suggested by Steinberg
with the ‘differential adhesion hypothesis’ [31].

In our simulations, we observe that unconfined tissue
aggregates round up to assume spherical shapes. To measure
the surface tension, a freely growing tissue is placed in a
harmonic potential of stiffness k along the z-direction V (z) =
kz2/2. This forces the tissue to grow in a pancake-like shape.
The surface tension σS can then be found as follows: the free
energy in the central area A of the pancake is given by

F = A

∫
ρ(z)V (z) dz + 2σSA. (5)
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Figure 3. Dependence of the homeostatic pressure Ph on the following parameters is shown: (A) apoptosis rate k∗
a , (B) adhesion coefficient

f ∗
1 , (C) cellular growth coefficient B∗, (D) noise intensity T ∗

n , (E) intercellular DPD damping coefficient γ ∗
t , (F) intracellular DPD damping

coefficient γ ∗
c . All microscopic parameters are given relative to their value in the standard tissue (table 1) as indicated by the asterisk. Each

pressure point was measured by growing a tissue in a finite compartment of dimensions Lx = Ly = Lz = 5.59 and fitting the steady-state
pressure after the initial growth phase with a constant.

Assuming that ρ is constant over the thickness of the pancake
d, and minimizing the free energy at constant volume, we
obtain

σS = ρkd3

24
. (6)

It should be emphasized that this ignores any dynamic
contributions to the pancake thickness and assumes that the
configuration of the tissue has had time to equilibrate. In the
supplementary information, we verify that these effects are
small for the studied cases (supplementary figure 5 available
at stacks.iop.org/PhysBio/8/026014/mmedia). We work at a
lower cell division rate (increased γc) and verify the invariance
of the measured surface tension under variations of γc. In the
simulation, we then measure the quantity ζ = ∑

i z
2
i

/(
πr2

0

)
within a central region of radius r0 = 3Rpp (zi denotes the
z-component of �ri). To minimize dynamic contributions,
the measurement is performed in the time frame, where the
number of cell particles ranges from 100 to 4000. In the
continuum limit, ζ is found by integrating over the volume

ζ =
∫ r0

0
r dr

∫ 2π

0
dφ

∫ ∞

−∞
dz ρ(z) z2

/(
πr2

0

) = ρd3/12 (7)

and thus

σS = kζ/2. (8)

Figure 5 shows ζ as a function of k−1. Consistent with
the above calculations, ζ scales essentially linearly with k−1.
The resulting surface tension increases linearly with adhesion
parameter f 1.

To further test the applicability of our simulation
approach, we perform tissue sorting simulations based on
differences in surface tensions. We show that the cell sorting
experiments described above can be reproduced. To initialize
a cell sorting simulation, we grow an unconfined spheroid of
tissue and change a given fraction of the cells into a second
tissue type with different adhesive properties in a random
fashion. We also set cell division and apoptosis to zero.
At low adhesion strength, the random forces present in the
tissue induce the merging of the cells into larger and larger
clusters even in the absence of cell division. The progression
of a cell sorting simulation with a reduced level of adhesion is
illustrated in figure 6 with two snapshots at different simulation
times. As in the mentioned experiments, the stronger adhering
tissue aggregates in the center of the spheroid. Clearly, the

6
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Figure 4. (A) Number of cells N as a function of time t for two different tissue types grown independently in a cubic compartment of size
L = 11.2. The compartment consists of two parallel plates and periodic boundary conditions in the other directions. While the standard
tissue T1 has the standard growth coefficient B∗ = 1.0 and an intracellular damping coefficient γ ∗

c = 1.0, the second tissue type T2 has a
higher growth coefficient B∗ = 1.5, but also a higher intracellular damping coefficient γ ∗

c = 4.0. Noise is increased to kBT ∗
n = 10.0. As it is

visible from (A), T2 has a lower unconfined growth rate than T1. (B) Plot of the pressure measured by the compartment wall in the same
simulations as in (A) as a function of time. The second tissue T2 has a higher homeostatic pressure than T1. (C) Plot of the number of cells
of the two species in competition. The second tissue T2 takes over the entire compartment. (D) Plot of the pressure measured by the
compartment wall in the competition simulation shown in (C).
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Figure 5. The quantity ζ (as defined in the main text) as a function
of the inverse stiffness of the confining potential 1/k for various
adhesion coefficients f 1. Cell division is slowed down but
expansion is strong by setting γ ∗

C = 5 and B∗ = 2. All other
parameters are the same as in the standard tissue. As shown by the
linear fits (solid lines), the linear relationship predicted by
equation (8) is well reproduced.

presence of adhesive interactions between the cells in our
simulation gives rise to tissue surface and interfacial tensions.

5. Diffusion of cells within the tissue

The diffusion constant of cells within tissues has been
investigated in several experimental studies [32–34], showing

that cells perform a persistent random walk and that the
diffusion constant is smaller in more cohesive aggregates
than in less cohesive ones. In our simulations, the diffusion
constant of cells inside the tissue can easily be determined
by measuring their mean squared displacement over time.
Increasing adhesion between cells slows down diffusion as
expected (see figure 4 in the supplementary material available
at stacks.iop.org/PhysBio/8/026014/mmedia). However, the
rate of cell division and apoptosis in the tissue has a more
dramatic effect on the diffusion constant. Figure 7 shows
that the diffusion constant of cells in a tissue at its homeostatic
state is directly proportional to the apoptosis rate ka. Increasing
the noise kBTn by two orders of magnitude increases D only
by roughly 10%. Hence, the noise intensity appears to only
play a marginal role for diffusion. This is an indication that
the diffusion of cells arises mainly from a drift in random
directions due to cell division and apoptosis. The origin of
this effect is discussed in more detail by Ranft et al [11].

6. Tissue rheology

We study the rheology of tissues on timescales of the order
of the cell cycle time and length scales much larger than
single cells. Analytical arguments suggest that tissues behave
like fluids on timescales that are long compared to division
and apoptosis times. A detailed continuum theory describing
this fluidization process is given in [11]. The basic idea in
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Figure 6. Sorting of two tissues of different adhesive properties with increased noise kBT ∗
n = 5. The blue cells adhere to cells of their own

species with an adhesion coefficient f ∗
1 = 2; all other adhesions (cross adhesion and self-adhesion for the red tissue) are weaker (f ∗

1 = 0.5).
Shown are cuts through the tissue spheroid. (A) Initial configuration of the simulation. The two cell types are mixed in a tissue spheroid in
free space. (B) At the end of the simulation (at t ≈ 39), the red tissue surrounds the blue tissue. A small number of cells have evaporated off
the spheroid.
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Figure 7. Plot of the diffusion constant of cells in the tissue as a
function of the apoptosis rate kd = ka. The compartment dimensions
used are Lx = Ly = Lz = 4.47 with periodic boundary conditions.
With permission from [11].

this work is that the local homeostatic regulation of a tissue
relaxes internal stresses via cell division and apoptosis, which
leads to the visco-elastic behavior of otherwise purely elastic
tissues. Most importantly, it predicts an inverse proportionality
between shear viscosity and cell turnover.

In order to determine the rheological properties of
the simulated tissue, we perform a set of simulations
closely resembling actual rheological experiments in different
ensembles. Our goal is to determine the effective continuum
properties of the tissue from given microscopic parameters
of our model. We do observe that cell turnover naturally
fluidifies tissues on long timescales, and that the general
rheological response has a nonlinear dependence on cell
turnover, timescales and applied forces.

6.1. Shear plate simulations

As a first type of rheological measurement, we perform
shear plate simulations. The tissue fills the gap between

two infinite parallel plates. The top plate moves at constant
velocity relative to the bottom plate, creating a shear profile.
The measurement of the stress and velocity profile yields an
effective viscosity.

In our simulation, the tissue is confined by two bounce-
back walls perpendicular to the z axis, and periodic boundary
conditions in the other two directions. The top plate moves
at a velocity v0 in the x-direction. The stress σxz is measured
via the momentum exchange with the walls. The stresses at
top and bottom wall are opposite and equal, as expected. The
effective viscosity of the tissue is then defined as η = σxz/γ̇ ,
where γ̇ is the measured velocity gradient in the tissue.

We essentially observe an inverse proportionality between
cell turnover and viscosity (see figure 8). At low cell turnover,
limitations on simulation time do not allow us to impose
shear rates slow enough to be in the ‘long time’ limit. We
observe shear thinning and measure an apparent viscosity
independent of the cell turnover rate. This behavior, relevant
to the short time behavior of a tissue, is consistent with
the observed shear thinning when varying the plate velocity
in this regime (see supplementary figures 1–3 available at
stacks.iop.org/PhysBio/8/026014/mmedia).

6.2. Bulk-shear simulation

In a second set of simulations, we do not impose a constant
shear rate, but a constant shear stress in the bulk of the
tissue. For this, the tissue is grown in periodic boundary
conditions and a force �F is exerted directly on each of the
two particles constituting a cell. The force density �f is given
by �f (�r) = ρ(�r) �F(�r), where ρ(�r) is the number density of
particles at a given point.

We first choose a constant force density, where opposite
and equal forces F0 are exerted in two tissue layers:

Fx =
⎧⎨
⎩

F0 if 0 � z < d

−F0 if Lz/2 � z < Lz/2 + d

0 else.
(9)
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Figure 8. Plots of the ratio of the shear stress σ and the velocity
gradient γ̇ in shear plate simulations for different tissue parameters.
The compartment has the dimensions Lx = Ly = Lz = 5.59. A top
plate velocity v0 = 0.17 was employed. Roughly, the viscosity is
inversely proportional to the cell turnover rate. With permission
from [11].

In a fluid tissue, a linear profile of the velocity in the x-direction
would arise between the two layers in this simulation. We refer
to this type of measurement as a bulk-shear simulation.

In the absence of cell division and apoptosis (ka = 0), the
simulated tissue behaves as a yield-stress fluid. As shown in
figure 9, over a wide range of forces, the velocity profile in the
tissue vanishes. Only after the yield stress threshold is passed,
does the tissue suddenly exhibit a flow. In the presence of
apoptosis and cell division, this picture changes dramatically:
even for very small shear forces, the tissue shows a linear flow
profile; hence, the yield stress vanishes or is very small. As
the rate of apoptosis ka is decreased, the effective viscosity
increases and diverges as a power law k−α

a . The exponent
1 < α < 1.5 is close to unity (see figure 12 for a comparison
of the different measurement methods).

6.3. Oscillatory shear simulations

To probe the visco-elastic properties of tissues at different
timescales, we implement oscillatory shear simulations. We
use the same setup as in the bulk shear simulations, but with
an oscillating force density given by

Fx = F0 sin(2πz/Lz) sin(ωt). (10)

The total force exerted on the tissue vanishes, but a shear profile
arises at a frequency ω. In the linear regime, the velocity profile
is related to the external force by

vx = Re

[
ρF0 sin(kzz)

ηck2
z

eiωt

]
, (11)

where Re denotes the real part of a complex number, and ηc

is the complex viscosity. We measure ηc in our simulations
by fitting equation (11) to the observed velocity profile. In
figure 10, the modulus |ηc| and the phase δ of the complex
viscosity, given by eiδ = |ηc|/ηc, are plotted as a function of
different shear frequencies ω and for different apoptosis rates
ka. Corresponding plots for different noise intensities Tn and
adhesion strengths f 1 are given in the supplementary material
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Figure 9. (A) Velocity profile of a tissue without apoptosis and cell
division in the bulk-shear simulation (achieved by setting ka = 0).
The compartment has the dimensions Lx = Ly = Lz = 5.59. Over
a wide range of forces, the profile vanishes. The force felt by a
single cell is given by F. At the force F = 0.073, the yield stress
threshold is passed and the tissue shows a linear velocity profile in
the two regions with no applied force. (B) With cell division and
apoptosis (standard tissue), any force leads to flow.

available at stacks.iop.org/PhysBio/8/026014/mmedia. In all
cases, the viscosity decreases with increasing shear frequency
as seen in figure 10, whereas the phase angle δ increases toward
π/2. In a Stokes fluid, the velocity is proportional to the force
(δ = 0), whereas in an elastic material, the displacement
is proportional to the force (δ = π/2). Thus, increasing
frequency drives the tissue toward elastic behavior as
expected.

6.4. Dynamic tissue compression

While shear simulations can be used to determine the shear
viscosities of the tissue, the dynamic bulk modulus must
be measured by different means. In addition, the tissue
growth rate (kd − ka) in the vicinity of the homeostatic state
as a function of the pressure is essential for mapping our
simulations to continuum models introduced in earlier works
[9, 11] and must be determined.

To measure these properties, we grow a tissue in a
compartment confined by a moving piston, which is used to
compress or expand the tissue. A bounce-back wall at z = 0
confines the tissue on one side, whereas the piston at z = z0(t)
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|η c
|

ω

δ

ω

(A)

(B )

Figure 10. Modulus |ηc| (A) and phase δ (B) of the complex viscosity measured in the oscillatory bulk-shear simulation as a function of the
shear frequency ω for different apoptosis rates k∗

a = k∗
d in the tissue. Compartment dimensions are Lx = Ly = Lz = 8.95. Unless indicated

otherwise, the parameters of the standard tissue are used. The amplitude of the force on each particle is set to F0 = 0.0076. A larger
viscosity indicates a more solid-like behavior. The value π/2 is indicated in the plot for the phase (B). A value of π/2 corresponds to purely
elastic behavior, whereas a phase of 0 arises from a purely liquid-like tissue. Increasing cell division and apoptosis clearly leads to a more
fluid-like behavior of the tissue. The lines in the plot are fits of the Maxwell model to the data. The complex viscosity is fitted to (A). The fit
shown in (B) then directly follows.

is implemented as a force: Fz,piston(z) = awall/(z − z0)
8 with

awall = 0.093. Periodic boundary conditions are applied in the
two other spatial directions. By changing the compartment
volume exponentially via z0(t) = zinit · exp(r t), a steady-
state growth rate r is maintained. The effective growth rate is
given by ∂tN/N , and is found to be equal to r for reasonable
compression and expansion rates. By running this simulation
at different rates r, we probe (kd − ka) at different pressures.
In cases, where the compression rate ∂tz0/zinit exceeds the
implemented apoptosis rate ka, the tissue behaves as an elastic
body and the pressure in the tissue diverges as expected.

Otherwise, the pressure and (kd − ka) quickly reach a
steady state and are combined to give a measurement of the net
growth rate (kd − ka) as a function of the tissue pressure p (see
figure 11(A)). As proposed in [9], (kd − ka) is proportional
to the difference between the pressure and the homeostatic
pressure. These simulations also provide the compressibility
of the tissue: since the pressure and the cell density in the
tissue do not vary with time, the steady-state density can be
expressed as a function of the pressure (see figure 11(B)). Note
that this is a dynamic compressibility defined for continuous
deformations. Confined to a constant volume, the tissue
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P ∗
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ρ

ρ

P ∗

ρ
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Figure 11. (A) Cell division-apoptosis rate as a function of pressure
(in the vicinity of the homeostatic state) determined from tissue
compression simulations. The curve for the standard tissue is shown
together with the curve for the tissue with the twofold apoptosis rate
k∗

a = 2.0. The growth rate crosses zero at the homeostatic state of
the system. (B) Steady-state cell density in the tissue plotted as a
function of the applied tissue pressure. The curves were determined
in the same compression simulations as the data shown in (A). A
linear fit is also presented. For comparison, pressures obtained from
steady-state experiments (see figure 3) representing the homeostatic
state are given. Although coming from measurements in different
geometries, the homeostatic state variables agree surprisingly well
(within less than 10%).

always relaxes to its homeostatic pressure and density. Thus,
the long timescale compressibility modulus vanishes.

6.5. Tissues as Maxwell fluids

The tissue viscosities obtained in the various simulations
are plotted in figure 12 as a function of the apoptosis rate
ka. The various methods give consistent results. At large
enough values of ka, where the tissue behaves as a fluid, the
shear viscosity is essentially inversely proportional to the cell
turnover (approximately k−1.1

a ). This is in agreement with
the arguments presented by Ranft et al [11] which predict
η ∝ 1/ka.

At finite frequency, oscillatory shear simulations show
that the tissue is a visco-elastic fluid with a complex viscosity
depending on frequency. The simplest model for visco-elastic
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Figure 12. Effective viscosities determined via the shear-plate, the
bulk-shear and the oscillatory bulk-shear methods for the standard
tissue as a function of ka. In addition, the viscosities obtained by
fitting the Maxwell model in figure 13 are shown. Note how the
viscosity obtained by fitting the Maxwell model to the oscillatory
shear data nicely agrees with bulk-shear data. For large cell
turnover, all methods lead to essentially the same viscosity. At slow
cell turnover, shear thinning leads to differences in the measurement
techniques.
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Figure 13. Plot of the parameters of the Maxwell model (fitted to
the data presented in figure 10) as a function of ka. The blue dashed
line is proportional to 1/ka.

materials is the Maxwell model, which yields a complex
viscosity given by

ηc = η/(1 + iωτ). (12)

In this model, the zero-frequency viscosity η and the shear
modulus E are related by η = Eτ , where τ is the visco-elastic
relaxation time.

In figure 10, the expressions for the modulus |ηc| and
the phase δ of the complex viscosity are fitted to the data
from oscillatory shear simulations. Although the agreement
is not perfect, the main features of the rheological behavior
are captured. Both viscosity and viscous relaxation time are
inversely proportional to ka for non-zero ka (see figure 13) as
predicted in [11]. This implies a constant elastic modulus E.

At finite shear stress, shear-thinning effects play a role.
In the absence of cell turnover, the tissue behaves as a plastic
material with a finite yield stress (see figure 9). Any level of
cell turnover fluidizes the tissue on long timescales, and the
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yield stress vanishes. The tissue is a non-Newtonian fluid with
a viscosity varying with shear rate. Fitting this non-Newtonian
behavior with the corotational generalization of the Maxwell
model [35, 36], which predicts shear thinning, agreement is
only found at low shear rates.

On short timescales, the tissue behaves like a solid, as
long as the level of stress in the tissue is below the yield stress
threshold. To a first approximation, the timescale, on which
the transition between these two regimes takes place, is on
the order of the inverse rate of cell division and apoptosis.
Note that the rheology at the timescales that we study is a
macroscopic property of the tissue. It is dominated by cell
turnover, and thus contrary to single-cell experiments where
the rheology is dominated by the cytoskeleton [39–41], no
power-law dependence of G′ and G′′ is found.

7. Concluding remarks

In this work, we introduce a simple particle-based model for
simulating tissues. Each cell consists of two particles that repel
each other, giving cells the tendency to increase their volume.
Cells divide deterministically when reaching a specific size
checkpoint. The particles of different cells interact via a
pair potential that is repulsive at short distances to model
volume exclusion and attractive at intermediate distances to
represent cell–cell adhesion. We show that tissues given by
this model behave in a realistic manner in many situations and,
in particular, possess a well-defined homeostatic state. The
homeostatic pressure and density are measured as functions of
the model parameters. An important result is that when tissues
of different homeostatic pressures undergo a competition in
finite volumes, the tissue with the higher homeostatic pressure
wins by taking over the compartment. Indeed, we demonstrate
that even if the tissue with the lower homeostatic pressure has a
much larger unconfined division rate, the tissue with the higher
pressure wins the competition. We also show how a higher
noise in the tissue—corresponding to a higher cellular mobility
for example due to the loss of contact inhibition [37]—
leads to an increased homeostatic pressure that could result
in neoplastic behavior. Furthermore, adhesive interactions
between cells are at the origin of tissue surface tension that
cause tissue aggregates to round up. Similarly, interfacial
tensions which are responsible for the sorting of mixtures of
different cells exist. We measure tissue surface tensions in our
simulation as a function of cell–cell adhesion strength.

Using a number of rheological simulations, we measure
the visco-elastic properties of the tissue and their dependence
on model parameters. The shear viscosity is measured both in
a standard shear plate geometry and in a creep configuration
in which an external force on the cells is imposed. To further
probe the rheology of the tissue, we use an oscillatory shear
experiment with a time-dependent external force. Using this
technique, we measured the complex viscosity and the loss
tangent of the tissue. All three techniques lead to compatible
results. In particular, we investigate the dependence of the
rheological properties on the strength of cell–cell adhesion f 1,
the level of noise Tn and the rate of apoptosis ka in the tissue.
Both the lower levels of cell–cell adhesion and the higher

levels of noise lead to more fluid-like behavior of the tissue;
the shear viscosity η, the modulus of the complex viscosities
|ηc|, as well as the phase shift δ decreases. The apoptosis
rate in the tissue has an even more dramatic effect on tissue
rheology: for a vanishing apoptosis rate, the tissue has a finite
yield stress and exhibits typical plastic behavior, while for a
non-zero rate of apoptosis, the yield stress vanishes. Hence,
cell division and apoptosis lead to fluidization of the tissue.
We find that the shear viscosity decreases with the apoptosis
rate with a power law close to 1/ka.

We also study the diffusion of cells within the tissue:
in parameter regimes where the fluidization of the tissue is
caused by cell division and apoptosis, the diffusion constant
in the tissue is directly proportional to the rate of cell division
and apoptosis, while most other tissue parameters do not seem
to affect it significantly. Finally, we present a number of
simulations, in which we compress the tissue dynamically in
a controlled manner. Using these simulations, we determine
both its dynamical compressibility and its response to imposed
pressure via cell division and apoptosis. In our simulations,
we therefore measure all the continuum properties of the tissue
required for applying the coarse-grained models introduced in
earlier works [9].

In further research, we would like to use these simulations
to study more complex tissue architectures such as multi-
layered epithelia. In particular, the internal organization
of these tissues with respect to populations of stem cells
and differentiation should be investigated. The development
of spatial organization within tissues such as the finger-
like protrusions occurring in the epidermis could also be
studied. The stability of these structures under perturbations
is an important question, for example, how do different
subpopulations of cells coexist in these tissues and what is the
origin of fingering instabilities, which are observed at many
tissue interfaces in malignant and premalignant epithelia.
Finally, the survival of mutated cells and the dynamics of
tissue competition should be studied in tissues with a more
complex structure like epithelia and nutrient-limited tumors.
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[36] Kruse K, Joanny J F, Jülicher F, Prost J and Sekimoto K 2005
Generic theory of active polar gels: a paradigm for
cytoskeletal dynamics Eur. Phys. J. E 16 5–16

[37] Basan M, Idema T, Lenz M, Joanny J F and Risler T 2010 A
reaction-diffusion model of the cadherin–catenin system: a
possible mechanism for contact inhibition and implications
for tumorigenesis Biophys. J. 98 2770–9

[38] Humphrey William, Dalke Andrew and Schulten Klaus 1996
VMD—visual molecular dynamics J. Mol. Graph. 14 33–8

[39] Hoffman B, Massiera G, Citters K Van and Crocker J C 2006
The consensus mechanics of cultured mammalian cells
Proc. Natl Acad. Sci. 103 10259–64

[40] Fabry B, Maksym G N, Butler J P, Glogauer M, Navajas D
and Fredberg J J 2001 Scaling the microrheology of living
cells Phys. Rev. Lett. 87 148102

[41] Stamenovic D, Suki B, Fabry B, Wang N and Fredberg J J 2004
Rheology of airway smooth muscle cells is associated with
cytoskeletal contractile stress J. Appl. Physiol. 96 1600–5

13

http://dx.doi.org/10.1103/PhysRevLett.104.218101
http://dx.doi.org/10.2976/1.3086732
http://dx.doi.org/10.1073/pnas.1011086107
http://dx.doi.org/10.1103/PhysRevE.52.6635
http://dx.doi.org/10.1103/PhysRevLett.84.4244
http://dx.doi.org/10.1016/S0362-546X(01)00173-0
http://dx.doi.org/10.1016/S0895-7177(03)00128-6
http://dx.doi.org/10.1088/1478-3975/2/3/001
http://dx.doi.org/10.1529/biophysj.104.041459
http://dx.doi.org/10.1002/cyto.a.20287
http://dx.doi.org/10.1007/s10955-007-9289-x
http://dx.doi.org/10.1016/j.toxlet.2007.05.148
http://dx.doi.org/10.1016/j.cbi.2007.01.010
http://dx.doi.org/10.1103/PhysRevLett.81.4008
http://dx.doi.org/10.1016/S0006-3495(03)74715-8
http://dx.doi.org/10.1103/PhysRevE.71.051910
http://dx.doi.org/10.1002/jcp.1041240323
http://dx.doi.org/10.1088/1478-3975/5/1/015002
http://dx.doi.org/10.1088/1478-3975/6/3/036001
http://dx.doi.org/10.1083/jcb.200209042
http://dx.doi.org/10.1016/S0010-4655(03)00202-9
http://dx.doi.org/10.1016/j.ydbio.2004.11.012
http://dx.doi.org/10.1103/PhysRevE.57.924
http://dx.doi.org/10.1016/S0006-3495(00)76440-X
http://dx.doi.org/10.1016/S0378-4371(01)00009-7
http://dx.doi.org/10.1140/epje/e2005-00002-5
http://dx.doi.org/10.1016/j.bpj.2010.03.051
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1073/pnas.0510348103
http://dx.doi.org/10.1103/PhysRevLett.87.148102
http://dx.doi.org/10.1152/japplphysiol.00595.2003

